



I N S I D E C A R B O N

Moon Travel Tutorial: Creating a
Carbon Application

For Mac OS X

01/05/01



Apple Computer, Inc.
© 2001 Apple Computer, Inc.
All rights reserved.
No part of this publication may be re-
produced, stored in a retrieval sys-
tem, or transmitted, in any form or by
any means, mechanical, electronic,
photocopying, recording, or other-
wise, without prior written permis-
sion of Apple Computer, Inc., with
the following exceptions: Any person
is hereby authorized to store docu-
mentation on a single computer for
personal use only and to print copies
of documentation for personal use
provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of Ap-
ple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial pur-
poses without the prior written con-
sent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application devel-
opers to develop applications only for
Apple-labeled or Apple-licensed
computers.
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Mac, Macin-
tosh, and QuickDraw are trademarks
of Apple Computer, Inc., registered
in the United States and other coun-
tries.
Carbon is a trademark of Apple Com-
puter, Inc.

Adobe and PostScript are a trade-
marks of Adobe Systems Incorporat-
ed.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRAN-
TY OR REPRESENTATION, EITHER EX-
PRESS OR IMPLIED, WITH RESPECT
TO THIS MANUAL, ITS QUALITY, AC-
CURACY, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR PUR-
POSE. AS A RESULT, THIS MANUAL IS
SOLD “AS IS,” AND YOU, THE PUR-
CHASER, ARE ASSUMING THE EN-
TIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL, IN-
CIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possi-
bility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is au-
thorized to make any modification, exten-
sion, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liabil-
ity for incidental or consequential damag-
es, so the above limitation or exclusion
may not apply to you. This warranty gives
you specific legal rights, and you may
also have other rights which vary from
state to state.

3



 Apple Computer, Inc. 01/05/01

Contents

Chapter 1

Introduction: Moon Travel Tutorial

7

Organization of the Tutorial 8
Requirements 9

Chapter 2

Basic Carbon Concepts

11

Carbon Events 11
Event Types 12
Event References 13
Event Parameters 13
Event Targets 14
Default Event Handlers 14

Resources 15

Chapter 3

Specifying the Application

17

Defining the Goal for Moon Travel 17
Specifying the Interface 17

The Main Window 18
The Moon Facts Window 18
The About Window 18
The Main Menu 19

Chapter 4

Using Project Builder to Create the Moon Travel Project

21

Creating the Project 21
Project Builder Items and Groups 24

Build and Run the Sample Application 27

4



 Apple Computer, Inc. 01/05/01

C O N T E N T S

Chapter 5

Using Interface Builder to Create Windows

29

Open the Nib File 29
Create the Interface for the Main Window 31

Add Items to the Main Window 31
Add a Picture of the Moon to the Project 41
Set Attributes for the Main Window 42
Align Objects 44

Create the Moon Facts Window 47
Create a Window to Display Moon Facts 47
Create Content for the Moon Facts Window 49

Create the About Window 50
Create a New Window for the About Box 51
Create Content for the About Window 55

Chapter 6

Using Interface Builder to Add Menu Items

57

Add a Submenu to the Main Menu 57
Add a Compute Travel Time Menu Item 59
Add a Moon Facts Menu Item 60
Add an About Command 62
Add a Help Menu Command 63
Disabling Menu Items 64

Chapter 7

Writing the Event Handlers and Other Code

65

Look at the Existing Code 65
Declare Constants and Global Variables 66
Install the Window Event Handlers 68
Write the Main Window Event Handler 69

Write the Compute Travel Time Command Handler 72
Write the Moon Facts Command Handler 74
Write the About Window Command Handler 76

Write the Moon Facts Window Event Handler 78
Write the About Window Event Handler 79
Declare the Window Event Handlers 80
Add and Modify Code to Create the Interface 81

C O N T E N T S

5



 Apple Computer, Inc. 01/05/01

Build, Run, and Test the Application 82

Chapter 8

Adding the Moon Travel Help Book

85

Add the Moon Travel Help Book 85
Modify the Application’s Property List 86
Create a Function to Register the Help Book 87
Build, Run, and Test the Application 88

6



 Apple Computer, Inc. 01/05/01

C O N T E N T S

7



 Apple Computer, Inc. 01/05/01

C H A P T E R 1

1 Introduction: Moon Travel
Tutorial

This tutorial shows how to use Project Builder and Interface Builder to create a
simple Carbon application that calculates travel time to the moon and displays facts
about the moon. The Moon Travel application is designed to run on Mac OS X and
uses the Carbon Event Manager.

The Moon Travel tutorial covers a number of tasks, including the following:

�

creating a new project in Project Builder

�

using Interface Builder to create windows and menus

�

writing and installing Carbon event handlers

�

adding a PICT resource to the interface using Interface Builder

�

creating a radio button group control and retrieving its setting

�

displaying static text

�

getting text from a localizable strings file

�

displaying product and version information in an About window

�

getting a window out of the Dock after it’s been minimized

�

adding information about the application to the application’s bundle

�

adding a Help book as an application resource

�

launching the Help Viewer from the application’s Help menu

8

Organization of the Tutorial



 Apple Computer, Inc. 01/05/01

C H A P T E R 1

Introduction: Moon Travel Tutorial

Organization of the Tutorial

The tutorial is organized into seven chapters.

�

“Basic Carbon Concepts” (page 11)

provides a brief introduction to the terms
used in the tutorial and lists the event type constants you’ll use as you create the
Moon Travel application. If you’re already familiar with the Macintosh
programming model, you’ll find that several core concepts have changed for
Mac OS X, such as event and resource handling.

�

“Specifying the Application” (page 17) describes the goal of the Moon Travel
application, and specifies what the user interface should contain and how it
should behave. The specification should help you follow the steps for creating
the interface more easily.

�

“Using Project Builder to Create the Moon Travel Project” (page 21) shows how
to create a Project Builder project from a template, and provides a brief
introduction to Project Builder.

�

“Using Interface Builder to Create Windows” (page 29) offers step-by-step
instructions for creating the windows for the Moon Travel interface, attaching
commands to buttons, and laying out an Aqua interface.

�

“Using Interface Builder to Add Menu Items” (page 57) provides step-by-step
instructions for adding a submenu to the Moon Travel interface and attaching
commands to menu items.

�

“Writing the Event Handlers and Other Code” (page 65) shows how to create
the event and command handlers for the Moon Travel application.

�

“Adding the Moon Travel Help Book” (page 85)

describes how to add a help
book to a Project Builder project, register the help book with the operating
system, and open the help book to the title page.

C H A P T E R 1

Introduction: Moon Travel Tutorial

Requirements

9



 Apple Computer, Inc. 01/05/01

Requirements

You need the following to complete this tutorial:

�

a computer that’s running Mac OS X

�

Project Builder and Interface Builder, available on the Mac OS X Developer CD

10

Requirements



 Apple Computer, Inc. 01/05/01

C H A P T E R 1

Introduction: Moon Travel Tutorial

Carbon Events

11



 Apple Computer, Inc. 01/05/01

C H A P T E R 2

2 Basic Carbon Concepts

This chapter covers the key Carbon-related concepts needed to write an application
for Mac OS X using Carbon and the C programming language.

Carbon Events

Since the beginning of the Macintosh, most Macintosh applications have been
event-driven—that is, applications respond to various changes or occurrences and
take action based on the nature of the event. An

event

 is the means by which the
operating system communicates information about user actions, changes in the
processing status of the application, hardware activity, and other occurrences that
require a response from the application.

In the past, a typical Macintosh application would check repeatedly to see if an
event occurred and, if so, respond to the event. If no events were pending, the
application could choose to relinquish the processor for a specified amount of time
or perform other tasks before checking again to see whether an event occurred. This
sort of event checking and management is handled by the original (or classic) Event
Manager. However, this style of event management is no longer recommended and
is not used in this tutorial. Instead, you should use the handler-based event
management supported by the Carbon Event Manager.

The Carbon Event Manager offers a simple yet flexible approach to event handling
that greatly reduces the amount of code needed to write a basic application. It
provides standard handlers for most types of user interaction, so you can
concentrate on writing code that’s unique to your application. You don’t need to

12

Carbon Events



 Apple Computer, Inc. 01/05/01

C H A P T E R 2

Basic Carbon Concepts

write your own event handlers unless you want to override a default behavior. A
single callback function,

InstallEventHandler

, is all you need to attach your own
event handler to any Toolbox object.

The Carbon Event Manager’s streamlined event handling enhances system
performance on Mac OS X through more efficient allocation of processing time.
Applications that use the Carbon Event Manager not only run better on Mac OS X,
they help improve overall performance and responsiveness, creating a better
experience for our customers.

Handler-based event management is fairly straightforward. It involves these steps:

1. Identify the events your application must handle.

2. Write handlers (functions) to respond to the events.

3. Register the handlers with the operating system. This informs the operating
system of the events your application handles, and which handlers respond to
which events. To register a handler, you simply call an “InstallHandler”
function that passes a pointer to the handler along with information about the
events associated with the handler.

4. Call the function

RunApplicationEventLoop

 and the Carbon Event Manager does
the rest. When the Carbon Event Manager detects an event that your application
handles, the manager calls your handler.

Event Types

Every Carbon event is characterized by an

event type

, which consists of an event
class and an event kind. The

event class

 denotes a general category of events, such
as window or mouse events. The

event kind

 indicates a specific event within the
category, such as a window-close event. A class may have many events associated
with it. As you identify the events your application handles, you need to find the
pair of constants (event class and event kind) associated with each event. You can
find these constants in the Carbon Event Manager reference documentation or in
the

CarbonEvents.h

 header file.

C H A P T E R 2

Basic Carbon Concepts

Carbon Events

13



 Apple Computer, Inc. 01/05/01

The Moon Travel application uses the event classes and event kinds listed in Table
2-1. The event class

kEventClassCommand

 denotes a menu or other command. The
Moon Travel application processes commands from the main menu as well as those
issued by buttons in the main window.

Event References

When the Carbon Event Manager detects an event for your application, it returns
an event reference to your application. The

event reference

 is an opaque structure
that contains general information about the event’s class, kind, and time of
occurrence. Because it is opaque, you must use one of the Carbon Event Manager’s
accessor functions to get the data associated with the event reference.

The specific function you use to access the event reference depends on the type of
event. You use the function

GetEventKind

 to access the kind of event (window
activated, window close, and so forth); the function

GetEventClass

 accesses the
event class and the function

GetEventTime

 returns the time the event occurred.

Event Parameters

An

event parameter

 is an opaque structure that contains specific information
associated with an event, including the parameter name and parameter type. More
than one parameter can be associated with an event. A mouse-down event has four
parameters that specify mouse location, button pressed, modifier keys, and number
of mouse clicks.

Table 2-1

Event classes and event kinds used in the Moon Travel application

Event Class Event Kind

kEventClassCommand kEventProcessCommand

kEventClassWindow kEventWindowClose

kEventClassWindow kEventWindowActivated

kEventClassWindow kEventWindowClickContentRgn

14

Carbon Events



 Apple Computer, Inc. 01/05/01

C H A P T E R 2

Basic Carbon Concepts

You use the Carbon Event Manager function

GetEventParameter

 to retrieve the
specific data associated with an event parameter. You must supply the parameter
name and parameter type of the data you want to retrieve. Parameter names and
types are listed in the Carbon Event Manager reference documentation or in the

CarbonEvents.h

 header file.

The Moon Travel application uses only one event parameter, specified by the
parameter name

kEventParamDirectObject

 and the parameter type

typeHiCommand

.
You can use these values with the function

GetEventParameter

 to retrieve the
command ID of an event of class

kEventClassCommand

. Your application can then use
the command ID to determine what action to take, such as opening a window or
computing travel time to the moon.

Event Targets

An event handler is associated with an event target. An

event target

 can be an object
associated with the interface (such as a window, menu, or control) or it can be the
application itself. The Moon Travel application uses only windows as event targets.

An event target can have any number of events associated with it. For example, a
handler for an application’s main window (the event target) could process
command events, window events, and mouse events.

Default Event Handlers

If you are not doing anything out of the ordinary in your application, you can use
one of the Carbon Event Manager’s default event handlers. A default event handler
provides a standard response to each type of event received by an event target. For
example, the default window handler implements all the standard behavior for
manipulating a window with the mouse—closing it when the user clicks the close
button, resizing it when the using drags the resize control, and so on. You only need
to create and install a handler to take care of those aspects of the window’s behavior
that are specific to your application.

If your handler gets an event that it does not handle, the Carbon Event Manager can
use a default handler to process the event.

C H A P T E R 2

Basic Carbon Concepts

Resources

15



 Apple Computer, Inc. 01/05/01

Resources

Resources are a basic element of every Macintosh application. Resources typically
include data that describe menus, windows, controls, dialog boxes, sounds, fonts,
and icons. Applications and system software interpret the data for a resource
according to its resource type. Because such resources are separate from the
application’s code, you can easily create and manage resources for menu titles,
dialogs, and other parts of your application without recompiling every time you
change one of the resources. Resources simplify the process of translating interface
elements containing text into other languages.

In earlier versions of the Mac OS, resources were stored in a file’s resource fork. In
Mac OS X, files do not have resource forks. Instead, resources are stored in files
located in a resources directory. Although resources can be created in a number of
ways, including with tools such as Rez, the Moon Travel application uses Interface
Builder to create its interface-related resources.

Interface Builder is a WYSIWYG application from Apple Computer that lets you
quickly create interface elements using graphical tools. One of Interface Builder’s
advantages is that it supports the Aqua interface layout guidelines, which can save
you a lot of work. Once you create and save your interface, Interface Builder
generates a “nib” file that contains interface-related resources. (Nib is an acronym
for “Next Interface Builder.”) Then, from within your application you call various
functions, such as the functions

CreateWindowFromNib

 and

SetMenuBarFromNib

, to
create the interface elements from the nib file.

It’s also possible to use old-style resources in Mac OS X. The Moon Travel program
uses a PICT resource in the interface. The PICT is stored in a

.rsrc

 file located in the
resources directory.

16

Resources



 Apple Computer, Inc. 01/05/01

C H A P T E R 2

Basic Carbon Concepts

Defining the Goal for Moon Travel

17



 Apple Computer, Inc. 01/05/01

C H A P T E R 3

3 Specifying the Application

Before you use Project Builder and Interface Builder to create the Moon Travel
application, read the goal definition and interface specification for Moon Travel in
this chapter. They should help provide you with an understanding for creating the
Moon Travel application.

Defining the Goal for Moon Travel

Most people have difficulty understanding astronomical distances. Astronomers
use measurements, such as light years, but it’s often easier to comprehend the
vastness of planetary and stellar distances by relating them to something we have
experience with, such as walking, driving, or flying. The Moon Travel application
addresses this problem by translating distance into the number of days it would
take to travel to the moon, given a particular mode of transportation specified by
the user.

Specifying the Interface

Before you use Interface Builder to create an interface, list the interface elements
you’ll want and have a rough idea of how you’d like them to appear and to behave.
The Moon Travel application has a main menu and three windows (main, Moon
Facts, and About).

18

Specifying the Interface



 Apple Computer, Inc. 01/05/01

C H A P T E R 3

Specifying the Application

The Main Window

The main window displays a photograph of the moon, a list of modes of
transportation, a field that shows computed travel time, and three buttons. One
button computes travel time, another opens a window that displays facts about the
moon, and the third quits the application. The window’s title bar displays the words
“Moon Travel Time.”

The window opens when the application launches and closes when the application
quits. The user can minimize the window so its icon displays in the Dock. The user
can quit the program by clicking a Quit button or by choosing Quit from the File
menu.

The window is moveable but not resizable, and it becomes inactive when the Moon
Facts window opens.

The Moon Facts Window

The Moon Facts window displays static text containing information about the
moon. The window’s title bar displays the words “Moon Facts.”

The window opens when the user presses a button in the main window or chooses
the moon Facts command from the moon menu. The user can close or minimize the
window.

The user can’t modify or copy the text displayed in the window, or resize the
window. The window is moveable and becomes inactive when the user makes the
main window active.

The About Window

The About window displays the Moon Travel application icon and version and
copyright information about the Moon Travel application. The window’s title bar
displays the words “About Moon Travel.”

The window opens when the user chooses About Moon Travel from the Moon
Travel App menu. The user can close the window.

The user is not able to modify or copy the text or change the size of the window.

C H A P T E R 3

Specifying the Application

Specifying the Interface

19



 Apple Computer, Inc. 01/05/01

The Main Menu

In addition to standard menu items, the main menu has a Moon menu with two
commands—one to open the Moon Facts window and another to compute travel
time. The About menu item opens the About window, and the Help menu item
opens the Moon Travel Help to its table of contents page.

20

Specifying the Interface



 Apple Computer, Inc. 01/05/01

C H A P T E R 3

Specifying the Application

Creating the Project

21



 Apple Computer, Inc. 01/05/01

C H A P T E R 4

4 Using Project Builder to Create
the Moon Travel Project

This chapter shows you how to create a project with Project Builder, Apple's
integrated development environment (IDE) for Mac OS X. Project Builder provides
project editing, searching, navigation, file editing, project building, and debugging
for such Mac OS X software projects as applications, tools, frameworks, libraries,
plug-in bundles, kernel extensions, and device drivers.

You’ll create the Moon Travel project from a template, then build and run it. In later
chapters you’ll create the interface and write the code for the Moon Travel
application.

Creating the Project

To create the Moon Travel project, do the following:

1. Double-click the Project Builder icon located in Mac OS X in the folder

/
Developer/Applications

.

2. Choose New Project from the File menu.

22

Creating the Project



 Apple Computer, Inc. 01/05/01

C H A P T E R 4

Using Project Builder to Create the Moon Travel Project

A dialog opens with a list of template objects.

3. Select Carbon Application (Nib Based), then click Next.

Nib refers to a project that uses Interface Builder to create the interface. You’ll
use Interface Builder later.

4. Enter

MoonTravel

 as the project name and click Set to choose a location to store
the project.

C H A P T E R 4

Using Project Builder to Create the Moon Travel Project

Creating the Project

23



 Apple Computer, Inc. 01/05/01

5. Click Finish.

Project Builder creates a directory for you, places a project file and some source
files in it, and opens the project’s window. The project already contains sample
source files that you can compile and run.

24

Creating the Project



 Apple Computer, Inc. 01/05/01

C H A P T E R 4

Using Project Builder to Create the Moon Travel Project

Take some time to look at what’s in the Moon Travel project. If you already
understand what projects, targets, and frameworks are, you can move ahead to
“Build and Run the Sample Application” (page 27).

Project Builder Items and Groups

A Project Builder project contains two types of items: file references and targets. The
files are in a list at the left of the project window and the targets are in the pop-up
menu above the files list. The MoonTravel target is shown in the pop-up menu in
Figure 4-1 (page 25), with files arranged in groups in the list below the target
pop-up menu.

�

Files can be references to source files, resource files, libraries, and frameworks.
The files themselves aren’t in your project. You can place related files together
in groups. If a circle is beside a file, it’s used by the target selected in the Target
menu.

�

Targets are products you can build from your project’s files. A simple project,
such as the Moon Travel project, has just one target that builds an application. A
complex project may contain several. For example, a project for a client-server
software package could contain targets for

�

a client application

�

a server application

�

a private framework that both applications use

�

command line tools that you can use instead of the applications

The tutorial “AboutBox: Creating a Framework With Project Builder” shows
how to manage projects with multiple targets. You can download the tutorial
from the Mac OS X Developer Documentation website (see Developer Tools):

http://developer.apple.com/techpubs/macosx/

Project Builder organizes the files it created for the Moon Travel project into four
groups: Sources, Resources, External Frameworks and Libraries, and Products. To
see what ‘s in a folder, click the disclosure triangle next to its name.

C H A P T E R 4

Using Project Builder to Create the Moon Travel Project

Creating the Project

25



 Apple Computer, Inc. 01/05/01

Figure 4-1

MoonTravel target with files arranged in groups

�

Sources: These are files that contain the application’s source code and are
compiled to produce object code. In Project Builder, header files are listed in the
project window and are in this group. This project contains only one source file:

main.c

.

�

Resources: These are files that contain resources or that can be compiled to
produce resources. This project contains two:

main.nib

, which contains the
application’s interface-based resources, and

InfoPlist.strings

, which contains
strings that can be localized. You’ll read more about these later.

�

External Frameworks and Libraries: This project contains a framework and a
library. In Mac OS X, a framework is a shared library that’s bundled with its
header files and resources. Click the disclosure triangle next to

Carbon.framework

to see a list of its header files.

�

Products: These are the items the targets in your project produce. Right now,
there is one product,

MoonTravel.app

.

26

Creating the Project



 Apple Computer, Inc. 01/05/01

C H A P T E R 4

Using Project Builder to Create the Moon Travel Project

You can move the files into any groups you want. The groups are there solely for
your convenience and do not affect Project Builder’s ability to find or compile the
files.

Now go back to the Finder and take a look at the files in your project’s folder. They
look a bit different from the view you see in Project Builder.

Figure 4-2

Finder view of Moon Travel project files

MoonTravel.pbproj

 is a

bundle

 that keeps track of your project’s files and targets. (A
bundle is a directory in which executable code is stored along with related
resources. It’s a folder of files that the Finder treats as a single unit.) If you want to
see its contents, you can Control-click the

MoonTravel.pbproj

 icon.

English.lproj

 contains resources that are localized into English. In this case, it
contains

InfoPlist.strings

. You can have

lproj

 folders for other languages, in
which case the folder is named for the language, such as

French.lproj

 or

Japanese.lproj

.

Contains
localized
resources

Bundle

Contains
application
source code

Contains
interface-based
resources

C H A P T E R 4

Using Project Builder to Create the Moon Travel Project

Build and Run the Sample Application

27



 Apple Computer, Inc. 01/05/01

Notice that although

main.nib

 is in a different Project Builder group from

main.c

,
the two files are in the same folder. Also notice that

Carbon.framework

 isn’t in the
project directory. It’s in

/System/Library/Frameworks

. The project contains a
reference to it.

Build and Run the Sample Application

Build and run the sample application to get an idea of how Project Builder works.
The sample code should run without modification.

1. Click the Build button in the upper-left corner of the project window.

The Build panel appears. When the build finishes, a message appears at the
bottom of the project window. As long as you have not changed the source files,
you should not see any error messages.

To hide the Build panel, click the Build tab.

2. Click the Run button in the upper-left corner of the project window.

Project Builder launches the application and the Run window appears. At this
point, the application displays an empty window.

The Run window displays messages written to

stdout

 and

stderr

. You can
perform simple debugging by writing status information to these streams. You
perform more sophisticated debugging with Project Builder’s debugger, as
shown in the tutorial

DebugApp: Debugging and Application With Project Builder

,
available through the Mac OS X Developer Documentation website (see
Developer Tools):

http://developer.apple.com/techpubs/macosx/

3. Press Command-Q to quit the sample application.

28

Build and Run the Sample Application



 Apple Computer, Inc. 01/05/01

C H A P T E R 4

Using Project Builder to Create the Moon Travel Project

Open the Nib File

29



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

5Using Interface Builder to Create
Windows

In this chapter you’ll use Interface Builder to create the application windows as they
are described in “Specifying the Interface” (page 17).

1. “Open the Nib File” (page 29)

2. “Create the Interface for the Main Window” (page 31)

3. “Create the Moon Facts Window” (page 47)

4. “Create the About Window” (page 50)

Open the Nib File

A

nib file

 stores your application’s resources. A nib file is an XML text file that
describes your application’s windows, menus, buttons, text fields, and other user
interface elements.

1. Open the Moon Travel project if it is not already open.

2. Double-click the

main.nib

 file, located in the Resources group of the Moon
Travel project files.

30

Open the Nib File



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

Interface Builder opens these four windows:

�

Window: Displays when your application runs. An application can use any
number of windows

�

Carbon Palette: Contains controls, menu items, and windows that you can drag
into your interface. The Carbon Palette has five panes; the Enhanced Controls
pane is shown above.

�

Main Menu: Lets you edit the items that appear in your application’s menu bar.
It already contains common commands such as About, Quit, Save, Close, Copy,
and Paste. May of the menu items (Quit, for example) behave correctly without
your needing to write any code.

�

main.nib: Displays the top-level items in your nib file.

This window opens when the
user opens your application.

Drag elements from the
palette to create the interface.

You can edit your
application’s menus here.

Shows the elements in your interface.
To edit an element, click its icon.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the Interface for the Main Window

31



 Apple Computer, Inc. 01/05/01

Create the Interface for the Main Window

In this section, you’ll create the interface for Moon Travel application’s Main
window.

1. “Add Items to the Main Window” (page 31)

2. “Add a Picture of the Moon to the Project” (page 41)

3. “Set Attributes for the Main Window” (page 42)

4. “Align Objects” (page 44)

Add Items to the Main Window

You need to add several items to the Main window: two static text objects, a text
field, a radio button group, three buttons, and a PICT of the moon.

1. Click on the Text button in the Carbon palette, if necessary.

2. Add static text to the top-left corner of the window.

This is the label for the radio button group you’ll add later.

From the palette, drag the object named Static Text to the upper left corner of the
window.

3. Enter

Mode of Transportation

 as the static text field’s value.

32

Create the Interface for the Main Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

Double-click the static text field, type

Mode of Transportation

, and press Return.

If the field is too small and part of the text is cut off, select the field and choose
Size to Fit from the Layout menu.

4. Add a radio button group below the Mode of Transportation static text field.

The user will select a mode of transportation from this group of radio buttons.

From the palette, drag the radio button labeled Radio 1 to the area just below the
Mode of Transportation text field. The Radio 1 and Radio 2 radio buttons move
as a unit because they belong to a radio button group.

5. Increase the number of radio buttons in the radio button group to 4.

With the radio button group selected, choose Inspector from the Tools menu.
Choose Attributes from the Radio Group Inspector pop-up menu.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the Interface for the Main Window

33



 Apple Computer, Inc. 01/05/01

In the Rows field, type

4

 in the then close the Radio Group Inspector window.

6. Resize the radio button group by dragging its corner so you can see all four radio
buttons.

7. Label the radio buttons: Foot, Car, Commercial Jet, and Apollo Spacecraft.

Double-click Radio 1 so the text becomes editable, type

Foot

 and press Return.
Use this procedure to label the other three radio buttons.

Resize the radio button group by dragging its corner so you can see all four
labels.

8. Enter

trav

 as the radio button groups signature and

130

 as its ID.

In the Radio Group Inspector, choose Control from the pop-up menu. In the
Control ID box, type

trav

 in the Signature field and

130

 in the ID field. You need
these values later when your program reads the radio button group setting.

9. Add a static text label to the area below the radio button group.

This labels the field that displays the computed travel time to the moon.

From the palette, drag the object named Static Text to the area below the radio
button group.

10. Enter

Travel Time in Days

 as the static text field’s value.

Double-click the field, type

Travel Time in Days

, and press Return.

If the field is too small for the text, choose Size to Fit from the Layout menu.

34

Create the Interface for the Main Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

 The main window should now look something like the following:

11. Add a text field to the right of the Travel Time in Days label.

This is the field in which the computed travel time is displayed.

Drag the white box under the push button labeled “Button” from the palette to
the area next to the Travel Time in Days label.

12. Enter

4

 as the text field’s value.

Double-click the field, type

4

 and press Return.

13. Enter

trav

 as the text field’s signature and

129

 and the text field’s ID.

With the text field selected, choose Inspector from the Tools menu.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the Interface for the Main Window

35



 Apple Computer, Inc. 01/05/01

Choose Control from the pop-up menu in the Inspector window. In the Control
ID section, type

trav

 in the Signature field and

129

 in the ID field. You need these
values later when your program writes the computed travel time to the text
field.

14. Add the Compute Travel Time button.

The Compute Travel Time button issues a command that calculates the travel
time to the moon in days based on the selected mode of transportation.

Drag the push button from the palette to the area below the “Travel Time in
Days” label.

15. Enter

Compute Travel Time

 as the button’s text.

36

Create the Interface for the Main Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

Double-click the button, type

Compute Travel Time

, and press Return.

If the text isn’t visible, select the button and choose Size to Fit from the Layout
menu.

16. Enter

trav

 as the button’s command.

Choose Control from the pop-up menu in the Button Inspector, type

trav

 in the
Command text field, and press Return.

When the user presses this button, it sends a

trav

 command to the Carbon Event
Manager, which in turn calls your handler for the

trav

 command. You’ll define
the handler in the chapter “Writing the Event Handlers and Other Code”
(page 65).

17. Make the Compute Travel Time button the default button.

A default button pulses and is the button that’s selected when the user presses
Return.

Choose Attributes from the pop-up menu in the Button Inspector and select
Default as the Button Type.

18. Add a PICT placeholder to the top, right-side of the interface.

Later, you’ll replace the PICT placeholder with a picture of the moon.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the Interface for the Main Window

37



 Apple Computer, Inc. 01/05/01

In the Carbon Palette, click the Enhanced Control button, then drag the PICT box
from the palette to the right side of the window.

19. Resize the PICT box so it is 100 pixels square.

This size matches the size of the moon picture supplied with this tutorial. When
you add the picture of the moon later, the picture will assume the size of the
PICT box.

With the PICT selected, choose Inspector from the Tools menu, choose Control
from the pop-up menu, and type 100 in the height and width fields.

20. Add the Moon Facts button.

The Moon Facts button will open a window that displays facts about the moon.

38

Create the Interface for the Main Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

Click the Controls button in the palette, then drag the button labeled Button
from the palette to the area below the picture of the moon in the Main window.

21. Enter

Moon Facts

 as the button’s text.

Double-click the button, type

Moon Facts

, and press Return.

If the text isn’t visible, choose Size to Fit from the Layout menu.

22. Enter

fact

 as the button’s command.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the Interface for the Main Window

39



 Apple Computer, Inc. 01/05/01

Choose Control from the pop-up menu in the Button Inspector and type

fact

 in
the Command text field.

When the user presses this button, it sends a

fact

 command to the Carbon Event
Manager, which in turn calls your handler for the

fact

 command. You’ll define
the handler later on in this tutorial.

23. Add a Quit button.

40

Create the Interface for the Main Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

Drag a push button from the palette to the bottom, right side of the main
window.

24. Enter

Quit

 as the button’s text.

25. Enter

quit

 as the button’s command.

Choose Control from the pop-up menu in the Button Inspector, then choose Quit
from the Command pop-up menu.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the Interface for the Main Window

41



 Apple Computer, Inc. 01/05/01

When the user presses this button, the button sends a

quit

 command to the
Carbon Event Manager, which in turn calls a built-in handler that quits the
application.

26. Quit Interface Builder.

You’ll use Interface Builder again later. You need to quit from it now and open
it later so the picture you add in the next section will show up in Interface
Builder.

Add a Picture of the Moon to the Project

In this section, you’ll add to the project a PICT resource which you’ll use to replace
the PICT placeholder in the interface.

1. Copy the

moon.rsrc

 file to the same MoonTravel folder.

You should use the

moon.rsrc

 file supplied with this tutorial; it’s a PICT
resource. (You can create your own PICT resource by opening a picture using a
graphics application, then saving the picture as a PICT resource, with the file
extension

.rsrc

.)

2. Add the

moon.rsrc

 file to the Moon Travel project.

Make the Moon Travel project active by clicking the Project Builder icon in the
Dock. Then choose Add Files from the Project menu and select the

moon.rsrc

 file.

Click Open, select “Copy into group’s folder,” and click Add.

Project Builder adds the file to the Resource group based on the file’s extension.

3. Make Interface Builder active by clicking

main.nib

 in the Project Builder file list.

4. Click the Images tab in the main.nib window.

42

Create the Interface for the Main Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

If you don’t see the moon PICT in the Images pane, quit Interface Builder, then
open your

main.nib

 file from the Project Builder again.

5. Drag the icon that looks like a photo of the moon to the PICT box.

The moon appears in place of the PICT, at the size of the PICT box. Your window
should look similar to this. Later you’ll align the items in the interface to make
the window look more attractive.

Set Attributes for the Main Window

In this section you’ll resize the window and change its name and type.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the Interface for the Main Window

43



 Apple Computer, Inc. 01/05/01

1. Resize the Moon Travel Main window.

Click and drag the window‘s resize control so the window is just big enough to
hold its items.

2. Change the window’s name to Moon Travel Time.

With the window active, choose Inspector from the Tools menu, then choose
Attributes from the pop-up menu.

Type

Moon Travel Time

 in the Title text field.

3. Choose Document from the Window Class pop-up menu.

4. Set the window’s controls.

In the Controls group, make sure Collapse Box is the only control checked.

Collapsing lets the user put the window in the Dock.

5. Set the window’s attributes.

In the Attributes group, make sure Standard Handler is the only control
selected. This assures that any window activity for which you do not write a
handler (for example, dragging the window) gets taken care of by the operating
system.

You don’t need to set the Backing or Receives options; just use the defaults.

44

Create the Interface for the Main Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

Align Objects

Interface Builder has layout rectangles and other tools to help you align objects.
Aligning interface objects is complicated by the fact the objects in Mac OS X have
shadows which most user interface metrics don’t take into account. Layout
rectangles take shadows into account, so you should align the elements in your
interface based on the rectangles rather than the objects themselves. You can view
the layout rectangles of objects in Interface Builder by choosing Show Layout
Rectangles from the Layout menu.

To set size values by hand or view the size of an object, you can use the Size pane of
the Window Inspector (to set window size) and the Control pane of an object’s
inspector (such as the Button Inspector or the Radio Group Inspector).

You can align objects in several ways using Interface Builder.

�

Dragging objects with the mouse

�

Pressing arrow keys (with the layout grid off, a selected object moves one pixel
per key press)

�

Using a reference object to put selected objects in rows and columns

�

Using the built-in alignment functions

�

Specifying origin points in the Size pane of the Inspector window

�

Using a layout grid. (You can turn the layout grid on or off by choosing Grid >
Turn Grid On or Grid > Turn Grid Off from the Tools menu.)

Use the built-in alignment functions by doing the following:

1. Choose Show Layout Rectangles from the Layout menu.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the Interface for the Main Window

45



 Apple Computer, Inc. 01/05/01

Rectangles appear around each interface object.

2. Choose Alignment from the Tools menu.

The Alignment palette appears.

3. Align the items on the left side of the window.

Select the Mode of Transportation text label, the radio button group, the Travel
Time in Days text label, and the Compute Travel Time button by dragging a
selection box around them or by pressing and holding the Shift key as you click
each item.

Choose Left/Top from the Edge pop-up menu in the Alignment palette.

Click the Align Left Edges button in the top row of the Alignment palette.

46

Create the Interface for the Main Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

If you hover the pointer over any button in the Alignment panel, a label appears.

4. Align the Travel Time in Days text field with the Travel Time in Days label.

Select the Travel Time in Days text field and the Travel Time in Days label.

Click the Align Top Edges button in the Alignment palette.

5. Align the top edges of the Mode of Transportation text label and the picture of
the moon.

6. Align the right edges of the picture of the moon and the Moon Facts button.

Choose Right/Bottom from the Edge pop-up menu in the Alignment palette.

Click the Align Right Edges button in the Alignment palette.

7. Align the top edges of the Compute Travel Time button and the Quit button.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the Moon Facts Window

47



 Apple Computer, Inc. 01/05/01

8. Choose Hide Layout Rectangles from the Layout menu.

By now, the Moon Travel Time window should look similar to the following. If it
doesn’t you can use the Alignment palette and the Size and Control panes of the
Inspector to achieve the desired layout. You might also experiment with the “Apply
Layout Guidelines to Window” command in the Layout menu.

Create the Moon Facts Window

In this section, you’ll create a Moon Facts window that displays a few facts about
the moon. The facts consist of a text string stored in a

Localizable.strings

 file you’ll
create.

1. “Create a Window to Display Moon Facts” (page 47)

2. “Create Content for the Moon Facts Window” (page 49)

Create a Window to Display Moon Facts

1. Create a window.

This is the window you’ll use to display facts about the moon.

48

Create the Moon Facts Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

Click the Windows button in the Carbon palette. Then drag the icon of the
window as shown.

2. Name the window

Moon Facts

.

In the Instances pane of the main.nib window, double-click the word “Window”
that’s under the icon of the window you just created, type

Moon Facts

, and press
Return.

3. Name the title bar of the window

Moon Facts

.

With the window active, choose Inspector from the Tools menu, choose
Attributes from the Window Inspector pop-up menu, type

Moon Facts

 in the
Title text field, and press Return.

4. Choose Document from the Window Class pop-up menu.

5. Set the window’s controls.

In the Control group, make sure Close Box and Collapse Box are the only options
selected.

6. Set the window’s attributes.

In the Attributes group, make sure Static Content and Standard Handler are the
only options selected.

7. Resize the window to 325 by 100 pixels.

Choose Size from the Window Inspector pop-up menu, choose Width/Height
from the right Content Rect pop-up menu, and type 325 for width and 100 for
height.

8. Position the Moon Facts window where you’d like it to appear when the user
opens it.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the Moon Facts Window

49



 Apple Computer, Inc. 01/05/01

Where you position the window in Interface Builder determines its position
when the user opens it. You should make sure that when the Moon Facts
window opens the user can also see the main window.

9. Choose Save All from the File menu.

Next you’ll use Project Builder to add the window’s content, so you should
make sure your Interface Builder work is saved. But don’t close Interface
Builder, as you still need to create another window and set up the Main menu.

Create Content for the Moon Facts Window

You need to add the text you want displayed in the window. Although you could
use Interface Builder to type the text directly into the Moon Facts window, for
localizability it’s best to store the text in a

Localizable.strings

 file in the Moon
Travel project. Later you’ll write code that reads the

Localizable.strings

 file and
writes the string to the Moon Facts window.

1. Make the Moon Travel project window active.

Click the Project Builder icon in the Dock.

2. Add a

Localizable.strings

 file to your project.

Choose New File from the File menu, create an empty file named

Localizable.strings

, and add it to the Resources group in your project.

3. Open the

Localizable.strings

 file.

Click

Localizable.strings

 in the Groups & Files list. The empty file opens in the
right side of the Project Builder window.

4. Add a text key and the text to the file.

Type the following into the

Localizable.strings

 file:

{
"Facts" = "Mean values at opposition from Earth \r Distance from Earth
(km): 384,467 \r Apparent diameter (seconds of arc): 1864.2 \r
Apparent visual magnitude: -12.74"
}

50

Create the About Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

The file must begin and end with curly brackets. The contents must consist of a
text key (

‘Facts’

) followed by an equal sign followed by the text associated with
the key. Both the key and the string must be enclosed by straight quotation
marks. Later, you’ll retrieve the text for display simply by using the key
associated with the text.

Note the string contains formatting information (for example,

/r

) to indicate
returns and indentation. The final Moon Facts window will look like the
following, once you’ve implemented the code to read and display the

Facts

string from the

Localizable.strings

 file:

5. Save the Moon Travel project.

Create the About Window

In this section, you’ll create an About window that displays configuration
information read from the application’s bundle. An About window is a standard
element in a Macintosh application that, at a minimum, displays the application’s
icon, title, version, and copyright information. On Mac OS X, the About window
opens when the user chooses About from the application menu.

A Mac OS X application stores configuration information in two places inside the
bundle: an XML file called

Info.plist

 and a localized string file called

InfoPlist.strings

. The section “Project Builder Items and Groups” (page 24)
introduced

InfoPlist.strings

 as a file in the Resources group in Project Builder.
You should use the

InfoPlist.strings

 file to store information that needs to be
translated because it will be seen by users. The Get Info string, for example, is seen
by users in the About window you’ll create for the Moon Travel application.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the About Window

51



 Apple Computer, Inc. 01/05/01

A bundle can contain several

InfoPlist.strings

 files, each stored in a different
localization directory, such as

English.lproj

 and

Japanese.lproj

, along with other
localized resources. When you create an About window, you can read the version
and other strings from the localization directory appropriate for the language used
in the application. The Moon Travel project has one localization directory,

English.lproj

. Although it is possible to add other directories, you won’t add any
in this tutorial.

To create an About window, follow these steps:

1. “Create a New Window for the About Box” (page 51)

2. “Create Content for the About Window” (page 55)

Create a New Window for the About Box

1. Make Interface Builder active by clicking its icon in the Dock.

2. Create a window.

This is the window you’ll use to display the application’s configuration
information.

Click the Windows button in the Carbon palette, then drag the icon of the
window on the left to the Finder.

3. Name the window.

In the Instances pane of the main.nib window, double-click the word “Window”
that’s under the icon of the window you just created, type

AboutWindow

, and
press Return.

4. Name the title bar of the window

About Moon Travel

.

With the window active, choose Inspector from the Tools menu, choose
Attributes from the Window Inspector pop-up menu, type

About Moon Travel

 in
the Title text field, and press Return.

5. Set the Window class as Document.

With the new window active, choose Inspector from the Tools menu.

6. Set the window’s controls.

In the Control group, make sure Close Box is the only option selected.

52

Create the About Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

7. Set the window’s attributes.

In the Attribute group, make sure Standard Handler is the only option selected.

8. Resize the window to 264 by 165 pixels.

This size allows for the application icon, application title, and two lines of
configuration information. It also takes into account the spacing suggested in the

Aqua Human Interface Guidelines.

Choose Size in the Window Inspector pop-up menu, choose Width/Height from
the right Content Rect pop-up menu, and type

264

 for width and

165

 for height.

9. Add the Moon Travel application icon to the Interface.

You can use the same PICT you used for the main window. Follow the
instructions in “Add Items to the Main Window” (page 31) for adding a PICT
box to the interface. But in this instance, make sure you use the dimensions 64
by 64 when you size the PICT box. Then follow the instructions in “Add a
Picture of the Moon to the Project” (page 41) for dragging a PICT resource to the
PICT box.

10. Choose Show Layout Rectangles from the Layout menu.

You can align items more precisely using the edges of the layout rectangles.

11. Adjust the spacing of the Moon Travel application icon so it follows the
recommendations in the

Aqua Human Interface Guidelines.

The current guidelines call for a spacing of 8 pixels from the top icon to the
bottom of the title bar.

With the icon selected, choose Inspector from the Tools menu, then choose
Control from the pop-up menu.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the About Window

53



 Apple Computer, Inc. 01/05/01

Choose Top/Left from the Bounds pop-up menu and type

8

 for the y-value.

12. Center the Moon Travel application icon.

With the application icon selected, choose Alignment > Make Centered Column
from the Layout menu.

13. Add a static text item below the application icon.

This is the application title.

From the Controls palette, drag the object named Static Text to the area below
the icon.

14. Enter

Moon Travel

 as the static text field’s value.

Double-click the field so a blinking insertion point appears. Type

Moon Travel

and press Return.

54

Create the About Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

15. Adjust the spacing of the Moon Travel text so it follows the recommendations in
the

Aqua Human Interface Guidelines.

The current guidelines call for the top of the Moon Travel text’s layout rectangle
to be 12 pixels from the bottom of the Moon Travel application icon.

You actually need to calculate the spacing from the top of the window to the top
of the Moon Travel text layout rectangle. That spacing is 8 + 64 + 12, or 84. Eight
pixels for the space between the top of the window and the top of the application
icon, 64 pixels for the height of the application icon, and 12 pixels for the space
between the bottom of the application icon and the top of the Moon Travel text
layout rectangle.

With the Moon Travel static text field selected, choose Inspector from the Tools
menu, then choose Control from the pop-up menu

Choose Top/Left from the Bounds pop-up menu and type

84

 for the y-value.

16. Center the Moon Travel text and adjust the spacing.

With the Moon Travel static text field selected, choose Alignment > Make
Centered Column from the Layout window.

17. Turn off the Alignment rectangles.

Choose Hide Alignment Rectangles from the Layout menu.

The About window should look like this:

18. Position the About window where you’d like it to appear when the user opens it.

Where you position the window in Interface Builder determines its position
when the user opens it.

C H A P T E R 5

Using Interface Builder to Create Windows

Create the About Window

55



 Apple Computer, Inc. 01/05/01

Create Content for the About Window

You need to modify the

InfoPlist.strings

 file in Project Builder so the version
information is correct. Later you’ll write code that reads the

InfoPlist.strings

 file
and writes the

CFBundleGetInfoString

 to the About window.

1. Make the Moon Travel project window active.

Click the Project Builder icon in the Dock.

2. Open the

InfoPlist.strings

 file.

Open Resources group and click

InfoPlist.strings

. You should see three
strings that Project Builder added for you automatically.

/* Localized versions of Info.plist keys */

CFBundleName = "MoonTravel";
CFBundleShortVersionString = "MoonTravel version 0.1";
CFBundleGetInfoString = "MoonTravel version 0.1, Copyright 2000
MyGreatSoftware.";

3. Modify the Get Info and Short Version strings so the version is 1.0.

4. Delete

MoonTravel

 from the Get Info string.

5. Replace

MyGreatSoftware

 with

Apple Computer, Inc.

 or insert your company’s
name.

The Get Info string should look like this after you edit it:

"Version 1.0, Copyright 2000 Apple Computer, Inc.";

6. Save the Moon Travel project.

56

Create the About Window



 Apple Computer, Inc. 01/05/01

C H A P T E R 5

Using Interface Builder to Create Windows

After you’ve implemented the code to read and display the

CFBundleGetInfoString

,
the final About window will look like this:

Next you’ll go back to Interface Builder to add and modify the main menu for the
Moon Travel application.

Add a Submenu to the Main Menu

57



 Apple Computer, Inc. 01/05/01

C H A P T E R 6

6 Using Interface Builder to Add
Menu Items

In this chapter, you’ll add a menu with two items that issue the same commands as
the Compute Travel Time and Moon Facts buttons, and you won’t need to write any
code to do it. You’ll also add commands for two menu items that are created
automatically for you: About Moon Travel and Moon Travel Help.

1. “Add a Submenu to the Main Menu” (page 57)

2. “Add a Compute Travel Time Menu Item” (page 59)

3. “Add a Moon Facts Menu Item” (page 60)

4. “Add an About Command” (page 62)

5. “Add a Help Menu Command” (page 63)

6. “Disabling Menu Items” (page 64)

Add a Submenu to the Main Menu

In this section you’ll use the Carbon-Menus Palette to add a Moon menu to the
menu bar.

1. Click the Interface Builder icon in the Dock to make it active.

58

Add a Submenu to the Main Menu



 Apple Computer, Inc. 01/05/01

C H A P T E R 6

Using Interface Builder to Add Menu Items

2. In the palette window, click the Menus button.

The Menus palette contains seven elements:

�

The Application, File, Edit, and Window elements are fully-loaded menus
that you can drop into your application. Note that these menus were added
automatically when you created the Moon Travel application.

�

The Submenu element can be either a top-level menu that you add to your
menu bar or a hierarchical menu that you add to another menu.

�

The Item element is a single menu item that you can add to any menu.

�

The blank element is a separator that you can add to any menu.

3. Drag a Submenu item to your menu window, between Edit and Window.

4. Name the menu

Moon

.

Double-click the word Submenu, type

Moon

, and press Return.

C H A P T E R 6

Using Interface Builder to Add Menu Items

Add a Compute Travel Time Menu Item

59



 Apple Computer, Inc. 01/05/01

Add a Compute Travel Time Menu Item

In this section, you’ll add the Compute Travel Time command to the menu and give
it a command-key equivalent.

1. If the Moon menu isn’t open, click the word Moon.

2. Name the menu item

Compute Travel Time

.

Double-click the menu item, type

Compute Travel Time

, and press Return.

3. Assign Command-K as the

Compute Travel Time

 menu item’s command-key
equivalent.

Double-click to the right of

Compute Travel Time

 so a box appears and type

Command-K

.

You may have to try double-clicking a few places before you succeed. Try
double-clicking from the right edge of the word

Time

 all the way to the right edge
of the menu.

4. Enter

trav

 as the menu item’s command.

60

Add a Moon Facts Menu Item



 Apple Computer, Inc. 01/05/01

C H A P T E R 6

Using Interface Builder to Add Menu Items

Choose Inspector from the Tools menu, then choose Attributes from the pop-up
menu. In the Command section, type

trav

 in the text field. This is the same
command you added when you created the Compute Travel Time button. The
user gets the same result whether they choose Compute Travel Time from the
Moon menu or press the Compute Travel Time button in the main window.

When the user chooses Compute Travel Time, the Carbon Event Manager calls
your handler for the

trav

 command. You’ll define the handler in the chapter
“Writing the Event Handlers and Other Code” (page 65).

Add a Moon Facts Menu Item

In this section, you’ll add the Moon Facts command to the Moon menu. After you
drag a new item to the Moon menu, the procedure for naming it, assigning a
command-key equivalent, and associating a command with it is similar to what you
did to create the Compute Travel Time command.

C H A P T E R 6

Using Interface Builder to Add Menu Items

Add a Moon Facts Menu Item 61
  Apple Computer, Inc. 01/05/01

1. Drag an item from the Menus palette to the Moon menu.

2. Name the menu item Moon Facts.

Double-click the menu item so a blinking insertion point appears, type Moon
Facts, and press Return.

3. Assign Command-F as the Moon Facts menu item’s command-key equivalent.

Double-click to the right of the Moon Facts menu item and type Command-F.

4. Enter fact as the menu item’s command.

Choose Attributes from the pop-up menu at the top of the Menu Item Inspector.
In the Command section, type fact in the text field, and press Return.

62 Add an About Command
  Apple Computer, Inc. 01/05/01

C H A P T E R 6

Using Interface Builder to Add Menu Items

Add an About Command

The About menu item is automatically included in the main menu. All you need to
do is add a command that opens the About window you created in the section
“Create the About Window” (page 50).
� Enter abtb as the About MoonTravel menu item’s command.

From the pop-up menu at the top of the Inspector, choose Attributes. In the
Command section, type abtb in the text field, and press Return.

C H A P T E R 6

Using Interface Builder to Add Menu Items

Add a Help Menu Command 63
  Apple Computer, Inc. 01/05/01

Add a Help Menu Command

The Help menu item is included automatically in the main menu. You need to add
a command to invoke a function in your code that will call the Apple Help Manager
function to open Moon Travel Help. (You’ll write the function in “Adding the Moon
Travel Help Book” (page 85).

1. Click the Help menu item.

2. Click MoonTravel Help.

3. Enter mhlp as the menu item’s command.

Choose Attributes from the pop-up menu in the Menu Item Inspector. In the
Command group, type mhlp in the text field and press Return.

64 Disabling Menu Items
  Apple Computer, Inc. 01/05/01

C H A P T E R 6

Using Interface Builder to Add Menu Items

Disabling Menu Items

A number of menu items (such as Save and Save As) are automatically included in
the main menu, but are not needed in the Moon Travel application. Disable unused
items by following the steps below:

1. Click on the item you want to disable.

2. Open the Inspector for the item.

3. Make sure Enabled is not selected.

4. Quit Interface Builder.

You’re done with the interface. Next, you’ll write the code for the Moon Travel
application.

Look at the Existing Code 65
  Apple Computer, Inc. 01/05/01

C H A P T E R 7

7 Writing the Event Handlers and
Other Code

In this chapter, you’ll see what an application that uses the Carbon Event Manager
looks like. Then you’ll write the code that handles events for each window you
created, including functions that handle the trav, fact, abtb, and mhlp commands.
For readability, most error-checking code has been omitted from the code listings.

1. “Look at the Existing Code” (page 65)

2. “Install the Window Event Handlers” (page 68)

3. “Declare Constants and Global Variables” (page 66)

4. “Write the Main Window Event Handler” (page 69)

5. “Write the Moon Facts Window Event Handler” (page 78)

6. “Write the About Window Event Handler” (page 79)

7. “Declare the Window Event Handlers” (page 80)

8. “Add and Modify Code to Create the Interface” (page 81)

9. “Build, Run, and Test the Application” (page 82)

Look at the Existing Code

Before you start adding code to the main.c file that Project Builder created for you,
take a look at the code already in the file.

1. Make the Moon Travel project active by clicking the Project Builder icon in the
Dock.

66 Declare Constants and Global Variables
  Apple Computer, Inc. 01/05/01

C H A P T E R 7

Writing the Event Handlers and Other Code

2. Click main.c in the project window’s file list.

If you can’t see the main.c file, click the Files tab and open the Sources group.

You need only six functions to write an application that uses the Carbon Event
Manager. Veteran Mac programmes will notice that they don’t need to initialize
any Toolbox managers, nor do they need to write an event loop; all that’s
handled for them automatically.

The functions listed below are from the main.c file in your project, the error
checking and comments have been removed.

CreateNibReference (CFSTR (“main”), &nibRef);
SetMenuBarFromNib (nibRef, CFSTR("MainMenu"));
CreateWindowFromNib (nibRef, CFSTR (“MainWindow”), &window);
DisposeNibReference (nibRef);
ShowWindow (window);
RunApplicationEventLoop ();

Here’s what the statements do:

� CreateNibReference searches your application’s package for a file called
main.nib and opens it.

� SetMenuBarFromNib and CreateWindowFromNib set up the menu bar and main
window from the nib file.

� DisposeNibReference closes the nib file.

� ShowWindow displays the main window, since it was set up to be hidden by
default.

� RunApplicationEventLoop runs the main event loop.

Declare Constants and Global Variables

In this section you’ll declare the constants and global variables used in the Moon
Travel application. Many of these constants represent the commands, IDs, and
signatures you assigned to interface objects when you created the interface.

C H A P T E R 7

Writing the Event Handlers and Other Code

Declare Constants and Global Variables 67
  Apple Computer, Inc. 01/05/01

Copy the following declarations to the main.c file, at the top, just after the statement
#include <Carbon/Carbon.h>:

// Define constants for the commands, IDs, and signatures used
// in the interface. Make sure the values match those you assigned when
// you set up the interface in Interface Builder.
#define kComputeCommand 'trav'
#define kComputeSignature 'trav'
#define kShowMoonFactsCommand 'fact'
#define kOpenAboutBoxCommand 'abtb'
#define kOpenHelpCommand 'mhlp'
#define kTravelTimeFieldID 129
#define kModeOfTransportationButtonGroupID 130

// Define constants to use in the moon travel time computation.
#define kHoursPerDay 24
#define kDistanceToMoon 384467 // kilometers

// Define constants used for About Box layout
#define kIconHeight 64 // height of Moon Travel app icon
#define kAboveIconSpacing 8 // must be 8 pixels above the app icon
#define kBelowIconSpacing 12 // must be 12 pixels below the app icon
#define kAppTitleHeight 17 // height of rect. enclosing app title
#define kBetweenLineSpacing 8 // spacing between lines of text

// Define constants to identify the mode of transportation
#define kFootMode 1
#define kCarMode 2
#define kCommercialJetMode 3
#define kApolloSpacecraftMode 4

// Global window references.
WindowRef gMainWindow,
 gMoonFactsWindow,
 gAboutBoxWindow;

68 Install the Window Event Handlers
  Apple Computer, Inc. 01/05/01

C H A P T E R 7

Writing the Event Handlers and Other Code

Install the Window Event Handlers

In this section, you’ll declare event type specifiers associated with each window
event handler, then install the event handlers for the Main, Moon Facts, and About
windows. An event type is defined as an event class paired with an event kind. For
more information see “Event Types” (page 12).

1. Declare the event type specifiers for the main window.

When you install an event handler, the event type specifier tells the Carbon
Event Manager when to call the handler. The main window event handler takes
care of command events.

Copy the following to the main function, after the declaration OSStatus err:

 EventTypeSpec mainSpec = { kEventClassCommand,
 kEventProcessCommand};

2. Declare the event type specifiers for the Moon Facts window.

The Moon Facts window handler takes care of an event in the close button.

Copy the following to the main function, after the declaration for the main
window event specifier:

 EventTypeSpec moonSpec = { kEventClassWindow,
kEventWindowClose };

3. Declare the event type specifiers for the About window.

The About window handler takes care of an event in the close button.

Copy the following to the main function, after the declaration for the Moon Facts
window event specifier:

EventTypeSpec aboutSpec = { kEventClassWindow,

Note: Although each window event handler declared in the Moon Travel
application takes care of one type of event, event handlers can handle multiple
events. For handlers that take care of more than one event, you can declare an
array of event specifiers.

C H A P T E R 7

Writing the Event Handlers and Other Code

Write the Main Window Event Handler 69
  Apple Computer, Inc. 01/05/01

kEventWindowClickContentRgn };

4. Install the event handlers.

After the line DisposeNibReference(nibRef), add the following code:

InstallWindowEventHandler (gMainWindow,
NewEventHandlerUPP (MainWindowEventHandler),

 1, &commandSpec, (void *) gMainWindow, NULL);
InstallWindowEventHandler (gMoonFactsWindow,

NewEventHandlerUPP (MoonFactsWindowEventHandler),
 1, &moonSpec, (void *) gMoonFactsWindow, NULL);
InstallWindowEventHandler (gAboutBoxWindow,

NewEventHandlerUPP (AboutBoxEventHandler),
 1, &aboutSpec, (void *) gAboutWindow, NULL);

InstallWindowEventHandler tells the Carbon Event Manager to call the window’s
event handler whenever a specified event type happens in the window. The
parameters to the function InstallWindowEventHandler are the following:

� the target of the event handler—in this case, the window to which the
handler should be registered

� a pointer to the window event handler—in this case, the function
NewEventHandlerUPP returns a pointer to the specified function

� the number of events for which the handler is registered

� a pointer to the event types handled by the event handler

� a value that’s passed on to the window event handler when the Carbon
Event Manager calls the handler—in this case, a pointer to the window to
which the handler is registered

� a pointer to an event handler reference—in this case, NULL

Write the Main Window Event Handler

In this section, you’ll write the event handler for the main window and the three
functions called by the main window event handler:

70 Write the Main Window Event Handler
  Apple Computer, Inc. 01/05/01

C H A P T E R 7

Writing the Event Handlers and Other Code

� ComputeTravelTimeCommandHandler

� MoonFactsCommandHandler

� AboutBoxCommandHandler

When you set up the window attributes for the main window in the section “Set
Attributes for the Main Window” (page 42), you selected Standard Handler as one
of the window’s attributes. This means that the Carbon Event Manager handles all
of the usual window behavior for you—responding to drag events, minimizing the
window, quitting the application, and so forth. When an event associated with the
main window occurs, the Carbon Event Manager passes the event to your
application’s main window event handler. If the event handler doesn’t handle the
event, it can pass back the result code eventNotHandledErr, and the Carbon Event
Manager handles the event if it can. Otherwise, the event is ignored.

The handler you’ll write in this section needs to take care of events that aren’t
standard window events, namely, responding to button presses for the Compute
Travel Time and Moon Facts buttons.

The application-specific commands in the main menu are treated by the Carbon
Event Manager as events associated with the main window. So in addition to
handling Compute Travel Time and Moon Facts button presses, the Main window
event handler must process the main menu commands you created for the About
and Help menu items. From the Carbon Event Manager’s perspective, it doesn’t
matter whether the user issues the Compute Travel Time and Moon Facts
commands by choosing a menu command or by clicking a button in the main
window. The main window event handler in Listing 7-1) takes care of the command
regardless of its origin.

Copy the function in Listing 7-1 into the main program (main.c), after the main
function.

Listing 7-1 The main window event handler

pascal OSStatus MainWindowEventHandler (EventHandlerCallRef handlerRef,
EventRef event, void *userData)

{
 OSStatus result = eventNotHandledErr; // 1
 HICommand command;

C H A P T E R 7

Writing the Event Handlers and Other Code

Write the Main Window Event Handler 71
  Apple Computer, Inc. 01/05/01

 GetEventParameter (event, kEventParamDirectObject, typeHICommand, NULL,
 sizeof (HICommand), NULL, &command); // 2
 switch (command.commandID)
 {
 case kComputeCommand:
 ComputeCommandHandler ((WindowRef) userData); // 3
 result = noErr;
 break;
 case kShowMoonFactsCommand:
 MoonFactsCommandHandler (gMoonFactsWindow); // 4
 result = noErr;
 break;
 case kOpenHelpCommand:
 AHGotoPage (CFSTR ("Moon Travel Help"), NULL, NULL); // 5
 result = noErr;
 break;
 case kOpenAboutBoxCommand:
 AboutBoxCommandHandler (gAboutWindow); // 6
 result = noErr;
 break;
 }
 return result;
}

Here’s what the function does:

1. The handler sets the value of result to eventNotHandledErr. This assures that if
the event passed to the handler is not handled, the Carbon Event Manager
handles the event if it can.

2. The Carbon Event Manager function GetEventParameter gets the command ID
associated with the command. The command IDs are the four-character codes
you assigned to the buttons and commands in the interface and declared as
constants in the section “Declare Constants and Global Variables” (page 66).

3. Compute Command Handler computes travel time and displays the result. You must
write this function.

4. MoonFactsCommandHandler shows the Moon Facts window and displays
information about the moon . You must write this function.

72 Write the Main Window Event Handler
  Apple Computer, Inc. 01/05/01

C H A P T E R 7

Writing the Event Handlers and Other Code

5. The Apple Help Manager function AHGoToPage opens the Help Viewer
application to the Moon Travel Help table of contents. The first parameter must
be a string that matches the title of the help book’s table of contents page. This is
the title that is set by the HTML Title tag.The function AHGoToPage assumes you
have a properly constructed help book that is registered with the operating
system. See “Adding the Moon Travel Help Book” (page 85) for instructions on
adding and registering the Moon Travel Help book provided with this tutorial.

If the Help book or page aren’t found by the Apple Help manager, the function
AHGoToPage opens the Help Viewer to a blank page.

6. AboutBoxCommandHandler shows the About window and displays version
information for the Moon Travel application. You must write this function.

Write the Compute Travel Time Command Handler
In this section, you’ll write a function that computes travel time. The function

1. reads the value of the radio button group

2. chooses a calculation based on the radio button group, then makes the
calculation

3. converts the numerical result to a string

4. writes the string to the travel time field

Copy the function in Listing 7-2 into the main program, after the function
MainWindowEventHandler.

Listing 7-2 A handler that computes travel time based on the mode of transportation
selected by the user

pascal void ComputeCommandHandler (WindowRef window)
{
 ControlHandle modeOfTransportButtonGroup,
 travelTimeField;
 ControlID modeOfTransportControlID = { kComputeSignature,

kModeOfTransportationButtonGroupID };
 ControlID travelTimeControlID = { kComputeSignature,

kTravelTimeFieldID };
 CFStringRef text;

C H A P T E R 7

Writing the Event Handlers and Other Code

Write the Main Window Event Handler 73
  Apple Computer, Inc. 01/05/01

 double travelTime;
 SInt32 transportModeValue;

 GetControlByID (window, &modeOfTransportControlID, // 1
&modeOfTransportButtonGroup);

 GetControlByID (window, &travelTimeControlID, &travelTimeField);
 transportModeValue = GetControl32BitValue (modeOfTransportButtonGroup);

// 2
 switch (transportModeValue) // 3
 {
 case kFootMode:
 // Foot - good walking time is 4 miles per hour
 travelTime = (kDistanceToMoon/(4.0/0.62))/kHoursPerDay;
 break;
 case kCarMode:
 // Car - 70 miles per hour on the highway, no speed limit in space!
 travelTime = (kDistanceToMoon/(70/0.62))/kHoursPerDay;
 break;
 case kCommercialJetMode:
 // Commercial Jet - 600 mile per hour.
 travelTime = (kDistanceToMoon/(600.0/0.62))/kHoursPerDay;
 break;
 case kApolloSpacecraftMode:
 // Apollo 11 took 4 days to get to the moon.

// Use that as the basis for comparison with
 travelTime = 4;
 break;
 default:
 travelTime = 0;
 break;
 }
 text = CFStringCreateWithFormat(NULL, NULL, CFSTR("%g"), travelTime);// 4
 SetControlData(travelTimeField, 0, kControlEditTextCFStringTag, // 5
 sizeof (CFStringRef), &text);
 CFRelease (text); // 6
 DrawOneControl (travelTimeField); // 7
}

Here’s what the function does:

74 Write the Main Window Event Handler
  Apple Computer, Inc. 01/05/01

C H A P T E R 7

Writing the Event Handlers and Other Code

1. The Control Manager function GetControlByID gets the control handle
associated with the Mode of Transportation radio button group and the Travel
Time field.

2. The Control Manager function GetControl32BitValue returns a value that
indicates which radio button in the radio button group is selected.

3. Calculations are based on the mode of transportation selected, but do not take
into account the effects of gravity and inertia. Miles are converted to kilometers
by dividing by 0.62.

4. The Core Foundation String Services function CFStringCreateWithFormat
converts the floating point number to a CFString. The “printf-style” format
string %g indicates how the string should be formatted.

5. The Control Manager function SetControlData sets the Travel Time text field to
the value of the string, but does not draw the field.

6. The Core Foundation Base Services function CFRelease releases the memory
associated with the CFString.

7. The Control Manager function DrawOneControl redraws the Travel Time text
field with the new string.

Write the Moon Facts Command Handler
In this section, you’ll write a function that shows the Moon Facts window. The
function

� shows the Moon Facts window if it is not visible

� expands the window if the window is already visible but in the Dock

� writes a string from the Localizable.strings file to the window.

Copy the function in Listing 7-3into the main program, after the function
ComputeCommandHandler.

Listing 7-3 A function that shows the Moon Facts window

pascal void MoonFactsCommandHandler (WindowRef window)
{
 GrafPtr originalPort;

C H A P T E R 7

Writing the Event Handlers and Other Code

Write the Main Window Event Handler 75
  Apple Computer, Inc. 01/05/01

 Rect bounds;
 CFStringRef text;

 GetPort (&originalPort); // 1
 if (IsWindowCollapsed (window)) // 2
 CollapseWindow (window, FALSE);
 {
 else
 ShowHide (window, TRUE);
 SelectWindow (window); // 3
 }
 SetPortWindowPort (window); // 4
 GetWindowPortBounds (window, &bounds); // 5
 EraseRect (&bounds);
 text = CFCopyLocalizedString (CFSTR("Facts"),CFSTR("string")); // 6
 SetRect (&bounds, bounds.left, bounds.top, bounds.right, bounds.bottom);
 // 7
 TXNDrawCFStringTextBox (text, &bounds, NULL, NULL); // 8
 SetPort (originalPort); // 9
}

Here’s what the function does:

1. The QuickDraw Manager function GetPort saves the current graphics port. You
need to restore this later.

2. The Window Manager function IsWindowCollapsed checks to see if the window
is in the Dock. If it is, the CollapseWindow function expands the window to its
normal size. Otherwise the function ShowWindow makes the window visible.

3. The Window Manager function SelectWindow makes the window active and
frontmost.

4. The Window Manager function SetPortWindowPort sets the graphics port to the
active window.

5. The Window Manager function GetWindowPortBounds gets the bounds of the
active window while the QuickDraw function EraseRect makes sure the
window is empty.

6. The Core Foundation Bundle Services function CFCopyLocalizedString returns
the string associated with the key “Facts” from the Localizable.strings file. You
added this string to the Localizable.strings file in the section “Create Content
for the Moon Facts Window” (page 49).

76 Write the Main Window Event Handler
  Apple Computer, Inc. 01/05/01

C H A P T E R 7

Writing the Event Handlers and Other Code

7. The QuickDraw Manager function SetRect sets the bounds of the rectangle into
which you draw the string so the rectangle is the same area as the Moon Facts
window.

8. The Multilingual Text Engine function TXNDrawCFStringBox draws static text into
the rectangle defined by the function SetRect. The last two parameters to
TXNDrawCFStringBox define style and display options. Pass NULL to use the
options associated with the current graphics port.

9. The function SetPort restores the original graphics port.

Write the About Window Command Handler
In this section, you’ll write a function that shows the About window. The function

� shows the About Box window

� writes a string from the Info.plist file to the window

Copy the function in Listing 7-4 into the main program, after the function
MoonFactsCommandHandler.

Listing 7-4 A function that shows the About window

pascal void AboutBoxCommandHandler (WindowRef window)
{
 GrafPtr originalPort;
 Rect bounds;
 CFStringRef text;
 CFBundleRef appBundle;
 SInt16 spacingAdjustment;
 TXNTextBoxOptionsData displayOptions;

 GetPort (&originalPort); // 1
 ShowHide (window, TRUE); // 2
 SelectWindow (window);
 SetPortWindowPort (window); // 3
 GetWindowPortBounds (window, &bounds); // 4
 appBundle = CFBundleGetMainBundle (); // 5
 text = (CFStringRef) CFBundleGetValueForInfoDictionaryKey (appBundle,
 CFSTR("CFBundleGetInfoString")); // 6

C H A P T E R 7

Writing the Event Handlers and Other Code

Write the Main Window Event Handler 77
  Apple Computer, Inc. 01/05/01

 if ((text == CFSTR(" ")) || (text== NULL))
 text = CFSTR("Nameless Application."); // 7
 spacingAdjustment = kAboveIconSpacing + kIconHeight + kBelowIconSpacing

+ kBetweenLineSpacing; // 8
 SetRect (&bounds, bounds.left, bounds.top + spacingAdjustment,
 bounds.right, bounds.bottom); // 9
 displayOptions.optionTags = kTXNSetFlushnessMask; //10
 displayOptions.flushness = kATSUCenterAlignment;
 TXNDrawCFStringTextBox (text, &bounds, NULL, &displayOptions); //11
 SetPort (originalPort); //12
}

Here’s what the function does:

1. The QuickDraw Manager function GetPort saves the current graphics port. You
need to restore this later.

2. The Window Manager function ShowWindow makes the About window visible.
The function SelectWindow makes the window active and frontmost.

3. The Window Manager function SetPortWindowPort sets the graphics port to the
active window.

4. The Window Manager function GetWindowPortBounds gets the bounds of the
active window.

5. The Core Foundation Bundle Services function CFBundleGetMainBundle returns
the bundle associated with the Moon Travel application. You need to pass the
bundle as a parameter to the function in the next statement.

6. The Core Foundation Bundle Services function
CFBundleGetValueForInfoDictionaryKey returns the string associated with the
key CFBundleGetInfoString. This is the string you modified in the section
“Create Content for the About Window” (page 55). The function
CFBundleGetValueForInfoDictionaryKey takes a CFString object as a parameter,
so you must use the function CFSTR to convert the Get Info string to a CFString
object.

7. To catch possible errors, if the string CFBundleGetInfoString doesn’t exist, then
set the value of text to “Nameless Application.”

8. You’ll declare the constants in this statement later, in the section “Declare
Constants and Global Variables” (page 66). You need the spacing adjustment to
adjust the area of the rectangle into which you’ll draw the Get Info string. The

78 Write the Moon Facts Window Event Handler
  Apple Computer, Inc. 01/05/01

C H A P T E R 7

Writing the Event Handlers and Other Code

spacing adjustment takes into account the size of PICT of the Moon and the
application title as well as the spacing recommended by the Aqua Human
Interface Guidelines.

9. The QuickDraw Manager function SetRect sets the bounds of the rectangle into
which you draw the string. The top of the rectangle is adjusted to assure the text
is drawn below the application icon and title you added in the section “Create a
New Window for the About Box” (page 51).

10. Set displayOptions to pass to the Multilingual Text Engine (MLTE) function
TXNDrawCFStringBox. The option tag kTXNSetFlushnessMask is an MLTE constant
that indicates to set the flushness bit. The flushness value kATSUCenterAlignment
is an Apple Type Services for Unicode Imaging (ATSUI) constant that indicates
the text should be drawn centered.

11. The function TXNDrawCFStringBox draws static text into the rectangle defined by
the function SetRect. The third parameter is set to NULL to indicate the style
associated with the current graphics port.

12. The function SetPort restores the original graphics port.

Write the Moon Facts Window Event Handler

In this section, you’ll write the event handler for the Moon Facts window. When you
set up the window attributes for the Moon Facts window in the section “Create the
Moon Facts Window” (page 47), you selected Standard Handler as one of the
window’s attributes. You can let the Carbon Event Manager handle every event
associated with this window—dragging, activating, minimizing, expanding the
window from the Dock—except closing. The standard close event would dispose of
the window. But because the Moon Travel application creates the Moon Facts
window once (when the application opens) and disposes of the window once (when
the application quits), the standard close event isn’t appropriate. The Moon Travel
application must open and close the Moon Facts window by showing and hiding
the window.

Copy the function in Listing 7-5 into the main program, after the function
MainWindowEventHandler.

C H A P T E R 7

Writing the Event Handlers and Other Code

Write the About Window Event Handler 79
  Apple Computer, Inc. 01/05/01

Listing 7-5 The Moon Facts window event handler

pascal OSStatus MoonFactsWindowEventHandler (
EventHandlerCallRef myHandler,

 EventRef event, void *userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventKind;

 eventKind = GetEventKind (event); // 1
 if (eventKind == kEventWindowClose) // 2
 {
 ShowHide ((WindowRef) userData, FALSE); // 3
 SelectWindow (gMainWindow); // 4
 result = noErr;
 }
 return result;
}

Here’s what the function does:

1. The Carbon Event Manager function GetEventKind returns the kind of the event.

2. If the event is a window close event, then handle it, otherwise return the result
code eventNotHandledErr to indicate the Carbon Event Manger should handle
the event.

3. The Window Manager function ShowHide hides the Moon Facts window.

4. The Window Manager function SelectWindow makes the main window active
and frontmost. You declared the global variable gMainWindow in the section
“Declare Constants and Global Variables” (page 66).

Write the About Window Event Handler

In this section, you’ll write the event handler for the About window. This handler
is similar to the Moon Facts window event handler in that the only event the
handler takes care of is closing the About window.

80 Declare the Window Event Handlers
  Apple Computer, Inc. 01/05/01

C H A P T E R 7

Writing the Event Handlers and Other Code

Copy the function in Listing 7-6 into the main program, after the function
MoonFactsWindowEventHandler.

Listing 7-6 The About window event handler

pascal OSStatus AboutBoxWindowEventHandler (EventHandlerCallRef handlerRef,
EventRef event, void *userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventKind;

 eventKind = GetEventKind (event); // 1
 if (eventKind == kEventWindowClickContentRgn) // 2
 {
 ShowHide ((WindowRef) userData, FALSE); // 3
 result = noErr;
 }
 return result;
}

Here’s what the function does:

1. The Carbon Event Manager function GetEventKind returns the kind of the event.

2. If the event is a click event in the content region of the window, then handle it,
otherwise return the result code eventNotHandledErr to indicate the Carbon
Event Manger should handle the event.

3. The Window Manager function ShowHide hides the About window.

Declare the Window Event Handlers

In this section, you’ll create a function declaration for each of the window event and
command handlers you’ve added to the main.c file.

Copy the declarations shown in Listing 7-7) to the main.c file, just after the
constants and global variable declarations.

C H A P T E R 7

Writing the Event Handlers and Other Code

Add and Modify Code to Create the Interface 81
  Apple Computer, Inc. 01/05/01

Listing 7-7 Function declarations for the window and command event handlers

// Function declarations for the window event handlers
pascal OSStatus MainWindowEventHandler(EventHandlerCallRef handlerRef,
 EventRef event, void *userData);
pascal OSStatus MoonFactsWindowEventHandler (EventHandlerCallRef myHandler,
 EventRef event, void *userData);
pascal OSStatus AboutBoxWindowEventHandler (EventHandlerCallRef handlerRef,
 EventRef event, void *userData);

// Function declarations for the command event handlers
pascal void ComputeCommandHandler ();
pascal void MoonFactsCommandHandler (WindowRef window);
pascal void AboutBoxCommandHandler (WindowRef window);

Add and Modify Code to Create the Interface

In this section you’ll modify some of the code in the main function that’s
automatically provided by Project Builder and add additional code that constructs
the interface from the main.nib file you modified in Interface Builder. You’ll also
add code to dispose of the windows when the application quits.

The code you’ll be modifying and adding uses the the global window variables you
declared in the section “Declare Constants and Global Variables” (page 66).

1. Modify the existing code that creates the main window.

Replace the CreateWindowFromNib statement with the following:

err = CreateWindowFromNib (nibRef, CFSTR ("MainWindow"), &gMainWindow);

This edits the CreateWindowFromNib statement so it uses gMainWindow instead of
window. You’ll declare the global window variable gMainWindow later.

2. Add code to create the Moon Facts and About windows from the Interface
Builder main.nib file.

Copy the following statements to the main function in the main.c file, after the
statement that creates the main window.

82 Build, Run, and Test the Application
  Apple Computer, Inc. 01/05/01

C H A P T E R 7

Writing the Event Handlers and Other Code

err = CreateWindowFromNib (nibRef, CFSTR("MoonFacts"), &gMoonFactsWindow);
err = CreateWindowFromNib (nibRef, CFSTR("AboutBox"), &gAboutWindow);

3. Modify the existing code to show the main window.

The operating system creates windows in a hidden state. When the application
launches, the main window should be visible, and the other windows hidden.
To make the main window visible you need to edit the ShowWindow statement so
it uses gMainWindow instead of window.

Replace the ShowWindow statement with the following:

ShowWindow (gMainWindow);

4. Make sure the windows are disposed of when the application quits.

Add the following lines to the main function, just after the
RunApplicationEventLoop statement:

DisposeWindow (gMainWindow);
DisposeWindow (gMoonFactsWindow);
DisposeWindow (gAboutBoxWindow);

Build, Run, and Test the Application

The Moon Travel application is almost complete. You only need to add the Moon
Travel Help book and the code necessary to register the help book and its title page.
Before you proceed to “Adding the Moon Travel Help Book” (page 85) take a
moment to build, run, and test the application.

1. Click the Build button in the upper-left corner of the Moon Travel project
window.

If the project does not build, check the messages. You may have introduced a
typographical error. If you need information on using the built-in debugger, see
DebugApp: Debugging an Application with Project Builder, available through the
Mac OS X Developer Documentation website (see Developer Tools):

http://developer.apple.com/techpubs/macosx/

C H A P T E R 7

Writing the Event Handlers and Other Code

Build, Run, and Test the Application 83
  Apple Computer, Inc. 01/05/01

2. Click the Run button in the upper-left corner of the project window.

3. Test the application.

Press each button in the interface, then select each menu command you added.
Does the interface look as you expect? If not, you may need to open Interface
Builder and make changes. Do the buttons and menu commands operate as you
expect? If not, you may need to check the code, the Info.plist and
Localizable.strings files.

Note: If you choose Moon Travel Help from the Help menu, the Help Viewer
should open to a blank page.

84 Build, Run, and Test the Application
  Apple Computer, Inc. 01/05/01

C H A P T E R 7

Writing the Event Handlers and Other Code

Add the Moon Travel Help Book 85
  Apple Computer, Inc. 01/05/01

C H A P T E R 8

8 Adding the Moon Travel Help
Book

This section describes how to add the Help book provided with the Moon Travel
tutorial. (If you want to create your own Help book, follow the instructions in the
Apple Help SDK, available from the Apple Developer’s website.)

To add the Moon Travel Help book, you must do the following:

1. “Add the Moon Travel Help Book” (page 85)

2. “Modify the Application’s Property List” (page 86)

3. “Create a Function to Register the Help Book” (page 87).

4. “Build, Run, and Test the Application” (page 88)

Add the Moon Travel Help Book

The Moon Travel Help book needs to be added to the localized folder,
English.lproj, and then added as a resource to the Moon Travel application.

1. From the Finder, copy the Moon Travel Help folder to the English.lproj folder
in the MoonTravel folder.

2. Open the Moon Travel project.

3. Add the Moon Travel Help folder to the Moon Travel project.

Choose Add Files from the Project menu, select the Moon Travel Help folder,
and click Open.

Deselect “Recursively create groups for added folders,” and click Add.

86 Modify the Application’s Property List
  Apple Computer, Inc. 01/05/01

C H A P T E R 8

Adding the Moon Travel Help Book

Project Builder adds the folder as a resource as long as you’ve deselected this
option.

4. If you need to, drag the Moon Travel Help book folder to the Resources group.

Modify the Application’s Property List

You need to place two entries in the application’s property list so that the Apple
Help Manager knows where to find the Moon Travel Help book. The first entry
consists of a CFBundleHelpBookFolder key with a string value identifying the folder
for your help book. The second entry consists of a CFBundleHelpBookName key with a
string value specifying the help book’s title, as defined in your title page file.

The property list must also contain a valid entry for the CFBundleIdentifier. The
bundle identifier is used by Core Foundation Bundle Services to find the bundle
that contains the application’s resource.

1. Click the Targets tab, then click Moon Travel in the Targets list.

2. Click Application settings, then click Expert.

3. Create an entry for the Help book folder name.

Click new sibling, type CFBundleHelpBookFolder as the property name and press
Return. Then type Moon Travel Help as the property value and press Return.

4. Create an entry for the Help book name.

Click New Sibling, type CFBundleHelpBookName as the property name, and press
Return. Then type Moon Travel Help as the property value and press Return.

5. Create an entry for the bundle identifier name.

To ensure that it’s unique, the bundle identifier should be a Java-style package
name; for example com.mycompany.myapp or edu.ABCSchool.myapp.

Click New Sibling, type CFBundleIdentifier as the property name, and press
Return.

Then type com.apple.moontravelapp as the property value and press Return.

C H A P T E R 8

Adding the Moon Travel Help Book

Create a Function to Register the Help Book 87
  Apple Computer, Inc. 01/05/01

The property list should similar to the following:

Create a Function to Register the Help Book

Registering a help book causes it to appear in the Help Center.

1. Click the Files tab, then in the Sources group, click main.c.

2. Declare the function RegisterMoonTravelHelp.

Add the following statement before the main function, just after the event and
command handler declarations.

OSStatus RegisterMoonTravelHelp (void);

3. Create the function RegisterMoonTravelHelp.

Copy the following code to the bottom of the main.c file:

88 Build, Run, and Test the Application
  Apple Computer, Inc. 01/05/01

C H A P T E R 8

Adding the Moon Travel Help Book

OSStatus RegisterMoonTravelHelp (void)
{
 CFBundleRef myAppsBundle;
 CFURLRef myBundleURL;
 FSRef myBundleRef;
 OSStatus err = 0;

 myAppsBundle = NULL;
 myBundleURL = NULL;

 myBundleURL = NULL;

 myAppsBundle = CFBundleGetMainBundle(); // a
 myBundleURL = CFBundleCopyBundleURL(myAppsBundle); // b
 CFURLGetFSRef (myBundleURL, &myBundleRef); // c
 err = AHRegisterHelpBook (&myBundleRef); // d
 CFRelease (myBundleURL); // e
 return err;
}

a. CFBundleGetMainBundle returns a reference to the application’s main bundle.

b. CFBundleCopyBundleURL returns the location of the bundle.

c. CFURLGetFSRef returns the FSRef for the bundle URL.

d. AHRegisterHelpBook registers the help book associated with the application’s
file specification reference (FSRef).

e. CFRelease releases the memory associated with myBundleURL.

4. Add code to register the Moon Travel Help book.

Type the following just before the statement RunApplicationEventLoop:

RegisterMoonTravelHelp();

Build, Run, and Test the Application

The Moon Travel application should be complete. Follow the instructions in “Build,
Run, and Test the Application” (page 82).

C H A P T E R 8

Adding the Moon Travel Help Book

Build, Run, and Test the Application 89
  Apple Computer, Inc. 01/05/01

� After the application launches, choose Moon Travel Help from the Help menu.
You should see the following page:

90 Build, Run, and Test the Application
  Apple Computer, Inc. 01/05/01

C H A P T E R 8

Adding the Moon Travel Help Book

	Moon Travel Tutorial: Creating a Carbon Application
	Contents
	Introduction: Moon Travel Tutorial
	Organization of the Tutorial
	Requirements

	Basic Carbon Concepts
	Carbon Events
	Event Types
	Event References
	Event Parameters
	Event Targets
	Default Event Handlers

	Resources

	Specifying the Application
	Defining the Goal for Moon Travel
	Specifying the Interface
	The Main Window
	The Moon Facts Window
	The About Window
	The Main Menu

	Using Project Builder to Create the Moon Travel Project
	Creating the Project
	Project Builder Items and Groups

	Build and Run the Sample Application

	Using Interface Builder to Create Windows
	Open the Nib File
	Create the Interface for the Main Window
	Add Items to the Main Window
	Add a Picture of the Moon to the Project
	Set Attributes for the Main Window
	Align Objects

	Create the Moon Facts Window
	Create a Window to Display Moon Facts
	Create Content for the Moon Facts Window

	Create the About Window
	Create a New Window for the About Box
	Create Content for the About Window

	Using Interface Builder to Add Menu Items
	Add a Submenu to the Main Menu
	Add a Compute Travel Time Menu Item
	Add a Moon Facts Menu Item
	Add an About Command
	Add a Help Menu Command
	Disabling Menu Items

	Writing the Event Handlers and Other Code
	Look at the Existing Code
	Declare Constants and Global Variables
	Install the Window Event Handlers
	Write the Main Window Event Handler
	Write the Compute Travel Time Command Handler
	Write the Moon Facts Command Handler
	Write the About Window Command Handler

	Write the Moon Facts Window Event Handler
	Write the About Window Event Handler
	Declare the Window Event Handlers
	Add and Modify Code to Create the Interface
	Build, Run, and Test the Application

	Adding the Moon Travel Help Book
	Add the Moon Travel Help Book
	Modify the Application’s Property List
	Create a Function to Register the Help Book
	Build, Run, and Test the Application

