CHAPTER 2

AboutBox: Creating a Framework
With Project Builder

Note: This tutorial contains screen shots with the Project Builder that was
included in DP4. Although these screen shots may not match exactly what
appears on your screen, this tutorial still works as written.

This tutorial shows how to create a project that builds both a framework and an
application that uses that framework. The framework contains a function that
displays a dialog box, a resource file for that dialog box, and a header file that
declares the function. To do this, you’ll create a project that builds an application,
then create a framework it will use. Along the way, you’ll learn a little on how Mac
OS X stores software configuration information.

This tutorial assumes that you’re familiar with Mac OS programming and have
already read the tutorial “HelloWorld: Creating a Project With Project Builder”

“Create the Project” (page 15)

. “Create and Build the New Framework” (page 20)

1
2
3. “Add the Framework to the Test Application” (page 31)
4. “Build and Run the Test Application” (page 35)

Create the Project

Choose File > New Project. Select Carbon Application, and click Next. Name the
project AboutBoxApp, choose a location, and click Finish. Project Builder creates a

Create the Project 15
Draft. Confidential. © Apple Computer, Inc. 7/31/00

16

CHAPTER 2

new project and opens its project window. The project contains sample files you can
compile and run without change. Later, you’ll add files that display an About box,
and build a framework around them.

Take a moment to look at the framework and the target already in the project. Later,
you'’ll create a new target and framework.

The Carbon framework contains all the Mac OS functions that are
Carbon-compliant. To open the Carbon framework, click the disclosure triangle
next to it. Project Builder displays a folder of headers. When you open that folder,
you can see all of Carbon’s header files. Your source files can include any of these

Create the Project
Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

files, and Project Builder will know to search for them within this framework. A
framework contains a shared library and all the resources and headers files it uses.

€ dboutBcranp 3

i

|
) Groups & Files

~ Sources

[Resources

< | External Frameworks and
| Carbon.framework

| 7 Headers

[R] ADSP.h

[} AE.h

[h] AEDataModel.h

[h] AEInteraction.h

[h] AEQbjects.h

[h] AEPackObject.h
[h] AERegistry.h

[h] AEUserTermTypes
[R AGP.h

[AIFF.h

[h] ASDebugging.h

[h] ASRegistry.h
[RATA.h

[R ATS.h

[h] ATSLayoutTypes.h
[h] ATSTypes.h

[h] ATSUnicode.h

[h] AVComponents.h
[h] AVLTree.h

| e
D Targers o iiiles -

e Breakpoinis |

af

header files.

Create the Project

The framework you’ll be creating in this tutorial contains not only its header file but
also its own resource file. To use the framework in a new application, you need to
add only one file to your project, instead of adding separate library, resource, and

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

The AboutBoxApp target builds a simple Carbon application. To look at this target,
click the Targets tab and click AboutBoxApp.

| J{{;’g'} W P]
: Lt pa;
: &

Targets

v b () AboutBoxApp

| ©Targ

4

18 Create the Project

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Click the Files & Build Phases tab. This displays the files for the AboutBoxApp
target.
- Target: AboutBoxAp i 3] e Bl

L

Files & Build Phases 'Y Build Settings Y Application Settings Y Executables

+ Headers

PChiEraore o

+ Bundle Resources

A
o

417 Sources

+ ResourceManager Resources

Files: |E mairn.h Pub Pr:

Files: InfaPlist.strings {1 variants)

Files: [c] main.c 0

Files: [r] main.r

This list contains a subset of the files in the project: only the files this target needs.
Notice that the files fall into four categories according to how the build system
handles them:

m Headers: Files that aren’t compiled, but that the target needs to manipulate
somehow, such as copying them into a framework.

m Bundle Resources: Files to copy into the product’s resource folder. These are
usually files of localized strings, nib files, sounds, and pictures. Note that if a file
needs to be compiled by Rez, it belongs in the ResourceManager Resources
category.

m Sources: Files that need to be compiled, such as C++, Objective-C, or Java source
files.

Create the Project 19

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Frameworks & Libraries: Files of already compiled code the product needs to
link against.

ResourceManager Resources: Files to merge into the product’s resources. These
are usually Rez (.r) files and resource (.rsrc) files.

The other tabs contain options that control how Project Builder builds the target.
You won’t need to change their settings in this tutorial.

Create and Build the New Framework

20

In this section, you’ll create and build a new framework that displays an About box.

e

. “Create the Framework Target” (page 20)

1
2. “Add Any Necessary Frameworks” (page 21)
3.
4
5

“Add the Source, Header, and Resource Files” (page 21)

. “Mark the Public Header Files” (page 27)

. “Assign an Executable Name and a Bundle Identifier to the Framework” (page

28)
“Add Carbon Headers to the Search Paths” (page 28)

“Build the Framework” (page 29)

“Regroup the Files” (page 29)

Create the Framework Target

Choose Project > New Target. Select Framework as the project type, and name it
AboutBox. This creates a new target that builds a framework named AboutBox.

Notice that Project Builder automatically places a reference to the AboutBox
framework in your project. Right now, there’s no AboutBox framework on the disk.
But when you build it, this reference will point to it. You’ll find it useful when you
have to add the AboutBox framework to the AboutBoxApp.

Create and Build the New Framework

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Add Any Necessary Frameworks

Because the AboutBox target will use functions from Carbon, you must add the
Carbon framework to it. Just click the Files tab, select AboutBox in the pop-up menu
above the files list, and click to the left of carbon. framework. A circle appears beside
it to show that it’s now part of the target that’s displayed in the pop-up menu above
the Files list.

| ", TEF M O3

& AboutBox ey

() Groups & Files

BT Sources

[~ Resources

| = External Frameworks and
o I [£] Carbon.framework

|7 Products

_®Targets

Add the Source, Header, and Resource Files

1. Choose Project > Add Files, and select AboutBox.c, AboutBox.h, and AboutBox.r.

These files should be in the same folder as this tutorial (/Developer/
Documentation/DeveloperTools/ProjectBuilder/AboutBox/).

2. Copy the files into the folder, and add the files to the AboutBox target.

Select “Copy into group’s folder.” In the Add To Targets box, make sure that
AboutBox is checked and AboutBoxApp is not checked. The setting of

Create and Build the New Framework 21
Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

“Recursively create groups for added folders” doesn’t matter since you are not
adding folders.
L almuiBoxdne abuprnl - - iPrslzots A B RADS

.4 W Copy into group's folder (if needed)
) Recursively create groups for added folders

»7 _Add To Targets

AboutBoxApp
&0 AboutBox
v
Xy =
Leh
{ Ccancel) b a—)
e

LR entbeciioe of pandon docomeniaiaey Yo o
Project Builder adds these files to the project, copies them to the project’s folder,
and adds them to the AboutBox target.

To see the contents of the AboutBox target, click the Files tab and select
AboutBox from the pop-up menu above the Files list. All the files in the
AboutBox target have a circle beside them.

To see which categories the files were added to, click the Targets tab, select the
AboutBox target, click the Files & Build Phases tab, and open all the categories.

22 Create and Build the New Framework

Draft. Confidential. © Apple Computer, Inc. 7/31/00

.

P A

o D SR L FLFIT LDy g R

e W

CHAPTER 2

Project Builder added each file to the appropriate category, according to the file’s
extension.

A L O RITREAL FUSULILTEA REE w2 ouE YL
- : P . i 1
r Files & Build Phases ' Build Settings T Framewaork Settings T Executables
= Headers
|
Files: |E AboutBox.h Pub Pr:
= Bundle Resources
1
Files:
~ Sources
Files: @ AboutBox.c w pt

i
|= Frameworks & Libraries

Files: E /System/Library Frameworks /Carbon.framewark

+ ResourceManager Resources

Files: |:rj AboutBox.r

AboutBox.c defines the function boAboutBox, which displays a simple dialog box
with the application’s name. AboutBox.h declares that function. And AboutBox.r
contains the resources for the dialog box it displays. Listing 2-1 shows the contents
of AboutBox.c.

Listing 2-1 AboutBox.c

#include <Carbon/Carbon.h>
#include "AboutBox.h"

#define kAboutBox200/* Dialog resource for About box */

void DoAboutBox(void)
{

Create and Build the New Framework 23

Draft. Confidential. © Apple Computer, Inc. 7/31/00

24

CHAPTER 2

CFBundleRef appBundle, fwBundle;
CFStringRef cfVersionString;

Str255 pascalVersionString;

short ierr, globalRefNum, localRefNum;

/* Get the application®s short version string. */

appBundle = CFBundleGetMainBundle();

cfVersionString = (CFStringRef) CFBundleGetValueForiInfoDictionaryKey(
appBundle, CFSTR("CFBundleShortVersionString'));

ifT ((cfVersionString == CFSTR('"")) || (cfVersionString == NULL))
cfVersionString = CFSTR("'Nameless Application');

CFStringGetPascalString(cfVersionString, pascalVersionString, 256,
CFStringGetSystemEncoding());

/* Open the framework®s resource fork. */

fwBundle = CFBundleGetBundleWithldentifier(
CFSTR(*"com.apple.tutorial .aboutbox™));

ierr = CFBundleOpenBundleResourceFiles(fwBundle, &globalRefNum,
&localRefNum);

/* Display the About box (from the framework)

with the version string (from the application). */
ParamText(pascalVersionString, ' \p","\p"," " \p"");
(void) Alert(kAboutBox, nil);

/* Close the framework®"s resource fork. */

CFBundleCloseBundleResourceMap(fwBundle, globalRefNum);

CFBundleCloseBundleResourceMap(fwBundle, localRefNum);
b

This code makes heavy use of Mac OS X’s new features for configuring software. An
application or framework is a bundle, a folder of files that the Finder treats as a
single unit. In this tutorial, both the application and its framework are bundles.

The first block of code retrieves the application’s short version string, which is the
application’s name and version number. A bundle’s information dictionary stores
that string, as well as the location of the bundle’s icon, the document types it can
open, and other configuration information. A Classic Mac OS application stores this
sort of data in a variety of resources, such as the "BNDL®, *S1ZE*, and *vers*
resources. A Mac OS X application stores it in two places inside the bundle: an XML
file called Info.plist and in localized string files called InfoPlist.strings.

Create and Build the New Framework
Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Info.plist contains information that doesn’t need to be translated into different
languages, such as the executable’s name on the disk and the bundle’s unique
identifier that are used only in code. InfoPlist.strings contains information that
does need to be translated, such as the Get Info string and short version string, both
of which are seen by users. A bundle can contain several InfoPlist.strings files,
each stored in a different localization directory, such as English.Iproj and
Japanese- 1poj, along with other localized resources. You’ll enter the short version
string for the AboutBoxApp target in “Assign a Short Version String to the

Application” (page 33).

The second block of code opens the framework’s resources, which contain a simple
dialog box. To open the resources, which are in the framework’s bundle, the
framework finds the bundle with its unique identifier

com.apple.tutorial .aboutbox". You’'ll assign that identifier to the framework in
“Assign an Executable Name and a Bundle Identifier to the Framework” (page 28).

The last two blocks of code display the dialog box and close the resources.

The rest of this section describes how this function works, line-by-line. If you want,
you can skip to “Mark the Public Header Files” (page 27).

Retrieving the Application’s Short Version String

This code is useful in any code that needs to access individual keys in a bundle’s
information dictionary. To see what keys are available, click a target and click its
Application Settings or Framework Settings tab. To see what keys are localizable,
look at the InfoPlist.strings file. For more information on what the keys mean, see
“Software Configuration” in Inside Mac OS X: System Overview (/Developer/
Documentation/SystemOverview/SystemOverview.pdf).

/* Get the application®s short version string. */

appBundle = CFBundleGetMainBundle(); /7 1

cfVersionString = (CFStringRef) CFBundleGetValueForiInfoDictionaryKey(/7 2

appBundle, CFSTR(*'CFBundleShortVersionString™));

if ((cfVersionString == CFSTR('"")) |l (cfVersionString == NULL)) // 3
cfVersionString = CFSTR("'Nameless Application™);

CFStringGetPascalString(cfVersionString, pascalVersionString, 256, // 4
CFStringGetSystemEncoding());

1. crBundleGetMainBundle retrieves the main bundle, which, in this case, is the
bundle for the application that’s using this framework. To find another bundle,
use CFBundleGetBundleWithldentifier.

Create and Build the New Framework 25

Draft. Confidential. © Apple Computer, Inc. 7/31/00

26

CHAPTER 2

2. CFBundleGetValueForInfoDictionaryKey retrieves the value that’s stored for the
specified key, which is "CFBundleShortVersionString®. First, it looks in the
InfoPlist.strings file for the user’s region. If it can’t find the value there, it
looks in the Info.plist file

3. If the application doesn’t specify a short version string, the if statement uses
"Nameless Application” instead.

4. CFStringGetPascalString converts a Core Foundation string to a Pascal string.
It’s needed because CFBundleGetValueForInfoDictionaryKey returned a Core
Foundation string, but ParamText, below, needs a Pascal string

Opening the Framework’s Resources

This code is useful in any framework that has its own resources.

/* Open the framework®"s resource fork. */

fwBundle = CFBundleGetBundleWithldentifier(// 1
CFSTR(*"com.apple.tutorial .aboutbox™));
ierr = CFBundleOpenBundleResourceFiles(fwBundle, &globalRefNum, // 2

&localRefNum);

1. crBundleGetBundleWithldentifier returns a reference to the AboutBox
framework by searching for its unique identifier
com.apple.tutorial .aboutbox". Later in this tutorial, you’ll assign that
identifier to the framework.

2. CFBundleOpenBundleResourceFiles opens the bundle’s resources, both the global
and the localized versions. Note that a bundle’s resources are usually stored as
a separate file inside the bundle.

Displaying the About Box

This code displays the About box and closes the resources.

/* Display the About box (from the framework)

with the version string (from the application). */
ParamText(pascalVersionString, ' \p","\p","\p""); // 1
(void) Alert(kAboutBox, nil); // 2

/* Close the framework®"s resource fork. */
CFBundleCloseBundleResourceMap(fwBundle, globalRefNum); // 3
CFBundleCloseBundleResourceMap(fwBundle, localRefNum);

Create and Build the New Framework

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

1. Thedialog box contains a text field with the string **~0*. ParamText substitutes its
argument (the application’s short version string) for that string.

2. Alert displays the dialog box.

3. CFBundleCloseBundleResourceMap closes the framework’s global and localized
resources.

Mark the Public Header Files

Public header files declare the public API for your framework. These are put inside
your framework in a folder called Headers, and anyone who uses your framework
has access to them.

A framework can also have private and internal header files. Private headers are
placed in your framework in a folder called Private Headers and are usually
removed from your framework when it’s distributed to others. Internal headers are
not placed in your framework.

The AboutBox framework has only one header file and it’s public. In this step, you’ll
mark it as public.

1. Click the Targets tab, select AboutBox, and click the Files & Build Phases tab.
2. Turn on the public header option for AboutBox. h.
If you can’t see AboutBox.h, click the triangle beside Headers.

To turn on the public header option, find the word “Pub” that’s to the right of
AboutBox.h and click it so it turns black (instead of gray)
Targat: SboutBox wy B

|r Files & Build Phase51 Build Settings T Framework Settings T Executables |

|v Headers

l
]
._Il
C
1
i

Gy

i Files: |E AboutBox.h Pub FPr:

e

If “Priv” is black, the header is private. If neither “Pub” nor “Priv” is black, the
header is internal.

Keep the target’s editor open since you’ll use it in the next section.

Create and Build the New Framework 27
Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Assign an Executable Name and a Bundle Identifier
to the Framework

The executable name is the name of the shared library file inside the framework. The
bundle identifier is used by the framework’s code to find the bundle that contains
its resources. To ensure that it’s unique, the bundle identifier should be Java-style
package name; for example, ""com.mybusiness.myframework" Or
"edu.StateU.psych.myapp".

1. In the target editor for AboutBox, click the Framework Settings tab and then
click the Expert button.

2. Inthe cFBundleExecutable field, enter AboutBox.
3. Inthe cFBundleldentifier field, enter "'com.apple.tutorial .aboutbox".

It should look like this:

iI;':.' % b Targer AbcutBox = iR
il o T A i s AarTRLn F
ilful '. — e — _ = — -]
|| Files & Build Phases Y Build Settings T Framework Settings 1 Executables
1k
: 8 £ New Sibling A€ Delete
E.l
| e TR, o PrTEa——— T
> CFBundleDevelopmentRegion String ¢+ English
(R CFBundleExecutable String + AboutBox
; ﬂ, CFBundleGetinfoString String s
!?'i CFBundlelcanFile String s
|i'§ CFBundleldentifier String ¢ |com.apple.tutorial.aboutbox| |
Iia. CrEundielniobiciinna-Wersine Binng : RZ
Note that this panel lists several other useful properties. For more information
on what they do, see “Software Configuration” in Inside Mac OS X: System
Overview (/Developer/Documentation/SystemOverview/SystemOverview.pdf).
Add Carbon Headers to the Search Paths
You need to add the pathname for the Carbon headers to AboutBox’s search path.
You’ll copy this information from the AboutBoxApp target and paste it into the
AboutBox target.
28 Create and Build the New Framework

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

1. Select the AboutBoxApp target in the targets list, click the Build Settings tab and
scroll down to the Search Paths section.

2. Copy the path name in the Headers section.

The path name is $(SYSTEM_LI1BRARY_DIR)/Frameworks/Carbon . framework/
Libraries/ClIncludes. You can double click the path name, choose Edit > Select
All, and then Edit > Copy.

3. Select the AboutBoxApp target in the targets list, click the Build Settings tab and
scroll down to the Search Paths section

4. Paste the path name into the Headers section.

Click on the Headers line, press Return, choose Edit > Paste, and press Return
again. The path name should now be under Headers.

Build the Framework

Click the column to the left of the AboutBox target so that a checkmark appears.
This is the same as choosing a target from the pop-up menu above the Files list.

Tu, Wy X
Targets " fi'
I .

b £ AboutBoxApp
v [() AboutBox

Fijes

All the buttons along the top of the project window apply to the selected target.
Click the Build button to build the framework.

N

Regroup the Files

Optionally, you can move the files into groups that make more sense: placing all the
framework files into one group and all the application files into another. Here’s one
suggested way to do it.

1. Click the Files tab.

Create and Build the New Framework 29

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

2. Create a new group and name it AboutBox.

Choose Project > New Group. Project Builder creates a new group in the Files
list and automatically selects its name. Type AboutBox and press Return.

FT T
(D Groups & Files

| Sources i

[Resources A

| External Frameworks and | |1

o I [F] Carbon.framework |:":I

[Products :I?J'

o [c] AboutBox.c 5'.

[h] AboutBox.h] :I

[r] AboutBox.r : \.

[| |AboutBox| | igi!

|.‘.}=:

3. Move the files AboutBox.c, AboutBox.h, and AboutBox. r into the AboutBox group.

Select all three files and drag them into the group

i i LE} Mmmf—‘mr PR _
| iy
© Groups & Files el
T Sources !"":}!!

l» |~ Resources ..g.'
| External Frameworks and '.

o I [F] Carbon.framework ';-’« !
I+~ Products 'E:I

&

o0

Multiple Items] .E:!

i i

4. Rename the Sources folder to AboutBoxApp.

Select the Sources folder and choose Project > Rename. Project Builder selects its
name. Type AboutBoxApp and press Return.

5. Move main.r and InfoPlist.strings from the Resources group into the
AboutBoxApp group.

30 Create and Build the New Framework
Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

6. Move carbon.framework out of External Frameworks & Libraries to the top level
of the Files list.

7. Move AboutBoxApp.app and AboutBox. framework out of Products to the top level
of the Files list.

8. Remove the empty groups: Resources, External Frameworks & Libraries,
Products.

Select the three groups and choose Edit > Delete. If Project Builder asks if you
want to delete them from the disk as well, click No.

The Files list should look like this:

O AbcuiBex o R

[=

') Groups & Files ' E!
<. AboutBoxApp)

[h] main.h _MI

[¢] main.c l

[r] main.r)

I InfoPlist.strings i:g

| AboutBox 'iﬂf

[¢] AboutBox.c

[h] AboutBox.h
[r] AboutBox.r

I [F] Carbon.framework

I [F] AboutBox.framework
AboutBoxApp.app

o o o o

i :
f i

Even though main.r is no longer in the Resources group, Project Builder still treats
itas aresource file. And even though you’ve changed the groups the files are in, you
haven’t changed where the files are on disk. If you go back to the Finder and look
at the project’s directory, you’ll notice they’re still there, in the same directory.

Add the Framework to the Test Application

Now you’ll add the AboutBox framework to the project’s AboutBoxApp target.

Add the Framework to the Test Application 31

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

“Update the Test Application” (page 32)

“Replace the Application’s Resource File” (page 33)
“Assign a Short Version String to the Application” (page 33)

“Add the Built Framework to the Project” (page 34)

a > w DN PE

“Make the Application Target Dependent on the Framework Target” (page 34)

Update the Test Application

In this sample, the test application is mostly written for you. All you need to do is
include a header file and delete some items that are now in the framework.

1. Inmain.c, include AboutBox_h.

Go to the beginning of main.c. After the #include <Carbon/Carbon.h> statement,
add #include "‘AboutBox.h"

2. Inmain.c, delete the declaration and definition of boAboutBox.
The declaration is soon after the include files and looks like this:
void DoAboutBox(void);

The definition is the last function in the file and looks like this:

void DoAboutBox(void)

{
//Carbon currently has an event problem with modal dialogs
//will put this back soon...
//(void) Alert(kAboutBox, nil); // simple alert dialog box
}

3. Inmain.h, delete the definition of kAboutBox.
It’s the last line in the file and looks like this:

#define kAboutBox200 /* Dialog resource for About box */

32 Add the Framework to the Test Application

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Replace the Application’s Resource File

Right now, main.r contains resources for both the application and the framework.
In this step, you’ll replace that file with one that contains resources for only the
application.

1. Remove main.r.

Select main.r and choose Edit > Delete. When Project Builder asks whether to
delete the file from the disk as well, press Delete.

2. Add the new main.r to the AboutBoxApp target.

Choose Project > Add Files, and select main.r, which should be in the same
folder as this tutorial (/System/Documentation/Developer/DeveloperTools/PBX/
AboutBox/). Select “Copy into group’s folder,” and make sure AboutBoxApp is
checked and AboutBox is not checked.

Project Builder copies the file into your project’s directory and adds it to your
project’s Files list and to the AboutBoxApp target.

Assign a Short Version String to the Application

The short version string contains the application’s name and version number. The
framework displays it in the About box.

In InfoPlist.strings, change CFBundleShortVersionString to ""AboutBoxApp
0.01d1". You can also change the cFBundleName and CFBundleGetInfoString if you
like, but they’re not used in this tutorial. The file should look as show in Listing 2-2.

Listing 2-2 InfoPlist.strings

/* Localized versions of Info.plist keys */

CFBundleName = "AboutBoxApp";
CFBundleShortVersionString = "AboutBoxApp 0.01d1";
CFBundleGetInfoString = "AboutBoxApp version 0.0.1d1, Copyright 2000";

Add the Framework to the Test Application 33
Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Add the Built Framework to the Project

You need to add the built framework to your application’s target.

1. Select AboutBoxApp from the pop-up menu above the Files list.
2. Click to the left of AboutBox. framework.

A circle appears beside it. It should look like this:

%3 4

L
=

[¢] AboutBox.c
[h] AboutBox.h
[r] AboutBox.r
I [F] Carbon.framework
[» [F] AboutBox.frameworlk]
AhoutBoxApp.app

(© AboutBoxApp I's |

) Groups & Files i |
I =1 AboutBoxApp T:
fe [6) main.h £
e [c] main.c A
lo [F] main.r i*jz
lo B InfoPlist.strings |§“
w | AboutBox |E|

ok

o

(+]

Make the Application Target Dependent on the
Framework Target

Now you need to let Project Builder know that the application target is dependent
upon the framework target. Say the framework’s source files have changed since
you last built it, and then you build the application target. As things stand now,
Project Builder won’t update the framework but will use the old version. After this
step, Project Builder will rebuild the framework and use the rebuilt version.

Add the Framework to the Test Application

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Just click the Targets tab, and drag the AboutBox target onto the AboutBoxApp

Gy W T o

If you click the triangle beside AboutBoxApp, you’ll see AboutBox underneath it.
That lets you know that AboutBoxApp now depends on AboutBox. If you build
AboutBoxApp, it will make sure AboutBox is built before proceeding.

S B 23

[Targets

(v =) AboutBoxApp
| AboutBox
(> &) AboutBox

| ridlag

Build and Run the Test Application

Click the AboutBoxApp target’s icon so an arrow appears in it. Then choose
Build > Build and Run. Project Builder builds and runs your application.

Build and Run the Test Application 35

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

In your application, choose AboutBox > About Hello, and look at your new About
box.

@ AboutBoxApp 0.01d1

36 Build and Run the Test Application

Draft. Confidential. © Apple Computer, Inc. 7/31/00

	AboutBox: Creating a �Framework With Project Builder
	Create the Project
	Create and Build the New Framework
	Create the Framework Target
	Add Any Necessary Frameworks
	Add the Source, Header, and Resource Files
	Retrieving the Application’s Short Version String
	Opening the Framework’s Resources
	Displaying the About Box

	Mark the Public Header Files
	Assign an Executable Name and a Bundle Identifier to the Framework
	Add Carbon Headers to the Search Paths
	Build the Framework
	Regroup the Files

	Add the Framework to the Test Application
	Update the Test Application
	Replace the Application’s Resource File
	Assign a Short Version String to the Application
	Add the Built Framework to the Project
	Make the Application Target Dependent on the Framework Target

	Build and Run the Test Application

