CHAPTER 2

DebugApp: Debugging an
Application With Project Builder

Note: This tutorial contains screen shots with the Project Builder that was
included in DP4. Although these screen shots may not match exactly what
appears on your screen, this tutorial still works as written.

This tutorial shows how to debug a project with Project Builder. In it, you’ll build a
debuggable project, set a breakpoint, step through your code, and examine your
data. You’ll also learn how to enter commands directly to GDB, the command-line
tool Project Builder uses as its debugger.

This tutorial assumes that you are already familiar with Mac OS X programming
and with at least one other debugger.

. “Build a Debuggable Application” (page 16)

. “Set a Breakpoint” (page 17)

1

2

3. “Start Debugging the Application” (page 18)
4. “Step Through the Code” (page 20)
5
6
7

. “Examine Your Data” (page 23)

. “Use the GDB Command-Line” (page 25)

. “Stop the Debugger” (page 28)

15
Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Build a Debuggable Application

Here, you'll create a new project and turn on the option that creates debugging
information.

1. Create a new project.

Choose File > New Project. Select Carbon Application, and click Next. Then
enter DebugApp as the project name, choose a location, and click Finish. Project
Builder creates a new project and opens its project window. The project contains
some sample files that you can compile and run without change.

2. Click the Targets tab, select DebugApp, and click the Files & Build Phases tab in
the target editor.

3. Turn on the Debug option for main_c.
If you can’t see main.c, click the triangle beside Sources.

Find the bug icon that’s to the right of main.c and click it so it turns black (instead
of gray). Now, when you build the application, Project Builder will include
debugging information in the binary.

' Qfing 4 ABuld_ jDBibug i
!ff 5w Target: DebugApp " 4% O
)

E r'F'iIes & l'u_il'ﬂ"FH'ﬁ'ﬁ'éE'Y Build Settings Y Application Settings Y Executables
e

!'b Headers

g, P Bundle Resources
|§ = Sources

I.H‘IJ Files: |£"| main.c O

| e

|4

,E P Frameworks & Libraries

% b ResourceManager Resources

f_|

o

16 Build a Debuggable Application

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

4. Click the Build button at the top of the project window.

N

Set a Breakpoint

In Project Builder, you can set a breakpoint even before you start the debugger.
Project Builder saves your breakpoints when you close your project, so they’re still
there the next time you open it.

Click the Files tab, open main.c and scroll down until you see the main function.
Click in the margin beside the Initialize statement. An arrow appears beS|de it.

"E: & o1 mzing ? LR -}
WiE ! e fi”
ol : —_y
=) int main{int arge, char *argy[]) i |
IR '
L Initialize(}; |
| Maketindow s |
w | I
| MakeMenu () ; m
E‘I EventLaop;
g
Lo return @;
I ||
I I
il-:-‘:‘ll | eviA TR e iorad ™ A TratimidiTa semea mereasee

If you want, look at the breakpoint list by clicking the Breakpoints tab. From here,
you can view the source code for a breakpoint, and enable, disable, or remove it.

oy W i =

- Enable Disable MNew :

! Remove View ;l

| i

EWhere Use i

gmain.c:?-l Vo I
Set a Breakpoint 17

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Start Debugging the Application

Click the Debug button, which has a spray can icon at the top of the project window.

|

18 Start Debugging the Application

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

The debug panel drops down. Project Builder starts running the application under
the debugger and stops at the breakpoint. The currently executing statement is
displayed in the code editor, highlighted with a red arrow pointing at it.

| DetugAns.pbhpre] — ~iProlects i
(| S 1
R [Consoles
main (0x3¢03) ,.¢ Variable Value
i File Static
sl # Frame = Arguments
‘fl 0 main argc 1
"lf 1 _start I argv (char **) Oxbffffcef
i 2 start Locals
3
f=7
i
’—
&
R o —
e L @Find 4 ABuild jeSlDebugesy
i_;% 4+ | [g main.c s = O
o
| é; int main{int arge, char *argy[]) "
dell | f r
A5 T Initializedy; 0
Maketindow s
MakeMenu () ;
EventLoopi ;
. return A;
: D s, L
s

In the toolbar on the right side are buttons that control the debugger’s operations.
You’ll use them in “Step Through the Code” (page 20).

m Run starts running application if it’s not already running.

m Pause pauses the application and displays the currently executing statement in
the editor.

m Continue continues running a paused application.

Start Debugging the Application 19
Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Step Over executes the next statement, staying within the same function.

Step Into executes the next statement, jumping to the first line in the next
function if its source code is available

Stop force-quits the running application and quits the debugger.

At the top of the Debug panel is a tab that displays the command line for GDB, the
GNU command-line debugger. You can handle most debugger tasks through
Project Builder’s interface, but you can access GDB directly for more advanced
tasks. You’ll use the GDB command line in “Use the GDB Command-Line” (page
25).

At the bottom of the Debug panel are two lists filled with information about the
current function in the current thread. You’ll use these lists in “Examine Your Data”

(page 23).

The Threads pop-up menu displays all the threads for your application. In this
tutorial, one thread runs your project’s source code, and the rest are system
threads that handle interapplication communication and the debugger.
Selecting a thread displays its call chain in the frames list.

The frames list displays the call chain for the selected thread. Clicking a frame
displays its variables in the variables list and displays its currently executing
statement in the code editor with a red arrow pointing at it.

The variables list displays all the local and global variables visible in the selected
frame.

Step Through the Code

20

Now, you’ll use the Step Over and Step Into buttons to watch your application
execute.

1.

Step over the Initialize function.

Click the Step Over button.
O

Step Through the Code

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Project Builder runs the Initialize function and stops at the next statement
MakeWindow.

2. Step into the Makewindow function.

Click the Step Into button.

Wb

Project Builder displays the first statement of Makewindow in the code editor and
its variables in the variables list.

O T T

15- “E-B;Cunsnles =
1
i r - Variable Value
! MakeWindow {ﬂx?-l:'DE}'v;i e -
| ; File Static
i # Frame Arguments
2
| 0 MakeWindow 2B wLacals
T 1 main b b wRect
i il |2 _start v
e
kil
i =
I __ @Find § ABuild % Debug
o 2
|l 4> | [main.c = & O
i
Ii
'iE woid MakeWindow() A Put g window */ b
£ I
3% Rect wRect ;
ﬁ.
7 » SetRect (EwRect 50 ,5A 680,208 ; A left, top, right, bottom */¢
i ﬁJ yWindow = Mewdindowinil, SwRect, "‘pHello", true, zoomMoGrow, (Window
if {myWindow == nil)
ExitToShell{;
i
glse
SetPort (GetWindowPort (W indow) ; /¥ zet port to new
I v
SEEEL) e

3. Watch it skip over part of the if statement.

Step Through the Code 21

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Press either the Step Into or Step Over button a couple times, until the arrow is
beside the if statement. Notice that when you’re executing a function whose
source code you don’t have (such as a Carbon function), the Step Into and Step
Over buttons do the same thing.

Press Step Into or Step Over again. Project Builder evaluates the if statement,
skips over the ExitToshel I statement, and goes directly to the setPort statement.

T e e [e e W
b bt R ...
“Egi woid MakeWindow() A Put g window */ &
=R
'E}; Rect wRect ;
&
" SetRect (EwRect 50 ,5A 680,200 ; A* left, top, right, bottom */
: ﬁJ yWindow = Mewdindowinil, SwRect, "‘pHello", true, zoomMoGrow, (Window
if {myWindow == nil)
{
i ExitToShell{;
1
: I
| elze
Y SetPort (GetWindowPort (W indow) ; /¥ zet port to new
: ¥ v
j— | <€ —3 e
o

T ——

4. Watch it skip back to the main function.

Press Step Into or Step Over a couple more times, until the arrow goes back to
the main function, beside MakeMenu.

S0l ae [maine B szn
B l..::;..d | A P P - . |
'i;éi int main{int argc, chor *argv[]) s
s |4
| m| Initialize();)
i Makeindow s
: Y MakeMenu{ 3;
i EventLoopi ;
|
i| return A;
i 1 b
1 L
_; all & —3 .
i

22 Step Through the Code
Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Examine Your Data

Now you’ll examine the application’s data with Project Builder.

1. Step into DoEvent.

Step over MakeMenu and then step into boEvent. It should look like this:

e mging 8 Ly

wioid EventLoop 2
I
; {
! Boolean gotEvent ;
| EventRecord ewvent; m
L
|; da
I » gotEvent = WaitMextEvent{evervEvent Bevent ,Bx7FFF ,nil};
By if {gotEvent)
o DoEvent (Eevent ;
B T owhile (trued; A loop forever */
A .
:I ']
- RN ettt ettt e i, | s

i

Now look at the variables list:

Variable Value

"File Static
Arguments
« Locals
gotEvent 0 "\000'
I event

Examine Your Data 23

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

It has three sections:

m File Static lists static variables declared at a file’s top level.

m Arguments lists the arguments to the currently executing function.

m Locals lists the local variables declared in the currently executing function.

In this function, only the Locals section has variables: the Boolean gotEvent, and
the structure event.

2. Step over the waitNextEvent Statement, and examine the record event.

Step over waitNextEvent. Then click the triangle beside event to view its

contents:
i ' Variable ' Value
O o e
a Arguments
- Locals
gotEvent 1001
= event
what 23
message 1634039412
when 3572822417
where
modifiers 0

e et gl SRR £

The values are all in red to show they’ve changed since the last statement ran. If
you want, you can also expand the where structure as well.

3. Step over the if statement.

24 Examine Your Data

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Notice that the variables are in black because this time, the values haven’t
changed:

Variable Value
File Static
Arguments
- Locals
gotEvent 11001
= event
what 23
message 1634039412
when 3572822417
where
modifiers 0

o el e LR

4. Continue the application.

Press Continue.

|

Use the GDB Command-Line

Project Builder debugs your program by sending commands to GDB, the GNU
command-line debugger. Project Builder provides you with a user interface that
handles the basic features. For more advanced features, you can type commands to
GDB directly.

In this section, you’ll use the GDB command-line to set a conditional breakpoint, a
breakpoint that Project Builder stops at only when a specified condition is true.

Note that when you close the project, Project Builder saves your breakpoints but not
any conditions associated with them. Project Builder does not save anything
entered at the GDB command-line.

Use the GDB Command-Line 25
Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

1. Pause the program.

Press the Pause button.

Project Builder pauses the program at whatever statement is currently
executing. That’s usually the waitNextEvent statement in EventLoop, but don’t
worry if it’s not.

2. Create a breakpoint, so the program pauses when you press a key.

Scroll down to the boEvent function, and find the case keybown statement. That’s
where it handles a key press. After that is a statement that sets the variable key.
Because you might want to see what key was pressed, place the breakpoint right
after that statement, at the statement if (event->modifiers & cmdKey).

TR] T, e~
BT e e DS malngg r -

-; caze kewDown: i
cose autokey: -
key = event-=meszage & charCodeMask
- if {event—smodifiers & cmdkey)
if {event—swhat == keyDown) m
DoMenuCommand {Menukey (key g _|
coze activateEvt: A% 1f wou needed to do zomething specialw

<€) L

3. Continue the program.

Press the Continue button.

| 4

4. Inyour application, press a letter.

Click DebugApp’s icon in the Dock, and the application displays its Hello
window. Press any letter.

Project Builder comes to the front, pauses your program, and displays the
statement at which you set the breakpoint.

5. Find the breakpoint’s number.
At the top of the Debugger panel, click Console tab.

The debugger console, which lets you enter GDB commands, is displayed.

26 Use the GDB Command-Line
Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

In the console, enter info br to display information about the breakpoints in
your program. It should look like this:

(gdb) info br

Num Type Disp Enb Address What

1 breakpoint keep y 0x000034b8 in main at main.c:31
breakpoint already hit 1 time

2 breakpoint keep y 0x0000392c in DoEvent at main.c:139

breakpoint already hit 1 time

Note the number of the breakpoint in DoEvent, which in this example is number
2.

6. Create a conditional breakpoint.

Enter cond <num> (key=="a"), where <num> is the breakpoint’s number. For
example:

(gdb) cond 2 (key=="a")
(gdb)

Now, Project Builder will pause at this breakpoint only if you press a. If you
want, you can enter info br again, to make sure. For example:

(gdb) info br

Num Type Disp Enb Address What

1 breakpoint keep y 0x000034b8 in main at main.c:31
breakpoint already hit 1 time

2 breakpoint keep y 0x0000392c in DoEvent at main.c:139

stop only if key == 97 "a*
breakpoint already hit 1 time

7. Continue the program.

Press the Continue button, and click DebugApp’s icon in the Dock.
8. Pressaq.

The application doesn’t pause.
9. Press a.

Project Builder comes to the front, pauses your program, and displays the
statement at which you set the breakpoint.

Use the GDB Command-Line 27

Draft. Confidential. © Apple Computer, Inc. 7/31/00

CHAPTER 2

Stop the Debugger

Because Mac OS X has protected memory, you don’t need to worry about quitting
the program directly from the debugger. Just press the Stop button near the top left
corner of the Debug panel. Project Builder force-quits the application.

28 Stop the Debugger

Draft. Confidential. © Apple Computer, Inc. 7/31/00

	DebugApp: Debugging an �Application With Project Builder
	Build a Debuggable Application
	Set a Breakpoint
	Start Debugging the Application
	Step Through the Code
	Examine Your Data
	Use the GDB Command-Line
	Stop the Debugger

