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Chaprer 1 PowerPC Runtime Conventions






"This chapter covers specific low-level details of the PowerPC runtime
environment, including the following:

e data storage types
e stack structure
® routine calling conventions

These conventions may be useful for low-level programming (if you are
writing in assembly language, for example) or for optimizing higher-level
code.

Data Types

The following table lists the binary data types and their sizes in the
PowerPC runtime environment.

Type Size Alignment Range Notes
(bytes) (bytes)
Ulnt8 1 1 0t0 255
Sint8 1 1 ~128t0 127
Sint16 2 2 ~32,768t0 32,767
Ulnt16 2 2 0t0 65,535
SInt32 4 4 23192311
Ulnt32 4 4 010231
Boolean 1 1 0 = false, nonzero = true
float 4 4 (219217 IEEE 754 standard
double 8 8 +(271074 4 21023) IEEE 754 standard
Pointer 4 4 0 to FFFFFFFF

All numeric and pointer data types are stored in big-endian format (that is,
high bytes first, then low bytes). Signed integers use two’s-complement
representation.
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Data Alignment

The PowerPC runtime environment supports multiple data alignment modes.
These alignments fall into two categories:

e the natural alignment, which is the alignment of a data type when allocated in
memory or assigned a memory address

¢ the embedding alignment, which is the alignment of a data type within a
composite data item

For example, the alignment of a UInt16 variable may differ from thatof a UInt16
data item embedded in a data structure.

Note: Data items passed as parameters in a routine call have their own special
alignment rules. See “Routine Calling Conventions,” beginning on page 16, for
more information.

"The binary data type table shows the natural alignment of each data type, which
is simply the size of the data type. This alignment is fixed.

In data structures, you can specify an embedding alignment that varies
depending on the alignment mode selected. Typically you can select the
alignment mode using compiler options or pragmas. The table below shows the
possible alignment modes.

Data type PowerPC 68K Packed Natural
Sint8 1 1 1 1
Uint8

Boolean

Sint16 2 2 1 2
Uint16

SInt32 4 2 1 4
Uint32

float 4 2 1 4
double dor8 2 1 8
Pointer 4 2 1 4
Composite dor8 2 1 16

In all but the 68K alignment mode, the embedding alignment of a composite
(for example, a data structure or an array) is determined by the largest
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embedding alignment of its members. The total size of a composite is
rounded up to be a multiple of its embedded alignment.

In 68K alignment mode, the embedded alignment of a composite is always
2 bytes. The total size of the composite is rounded up to a multiple of two.

In PowerPC alignment mode, if the first embedded element in a data
structure is type double, then the embedding alignment of all type double
members in the structure is 8. In such cases, the embedding alignment for
the entire structure is also 8 bytes.

Note that you may need to adjust embedded alignments if you are
converting code from the classic 68K environment to the PowerPC (or
CFM-68K) runtime environments. If you wish to enforce classic 68K
alignment on your PowerPC code, you can often specify compiler pragmas
or options to do so. Note, however, that the PowerPC processor is less
efficient when accessing data that is not placed according to its natural
alignment.
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PowerPC Stack Structure

The PowerPC runtime environment uses a grow-down stack that contains
linkage information, local variables, and a routine’s parameter information as

shown in Figure 1..

Figure 1. The PowerPC stack
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"The typical PowerPC stack conventions use only a stack pointer (held in
register GPR1) and no frame pointer. This configuration assumes a fixed stack
frame size, which is known at compile time. Parameters are not passed by
pushing them onto the stack.

The calling routine’s stack frame includes a parameter area and some linkage
information. The parameter area has space for the parameters of any routines the
caller calls (no7 the parameters of the caller itself). Since the calling routine might
call several different routines, the parameter area must be large enough to
accomodate the largest parameter list of all the routines the caller calls. It is the
calling routine’s responsibility for setting up the parameter area before each call
to some other routine, and the called routine’s responsibility for accessing the
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parameters placed within it. See “Routine Calling Conventions,”
beginning on page 16, for more information about the calling conventions.

"The calling routine’s linkage area holds a number of values, some of which are
saved by the calling routine and some by the called routine. Figure 2. shows
the structure of the linkage area.

Figure 2. A stack frame’s linkage area
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The elements within the linkage area are as follows:

e The base register (GPR2) value is saved at 20(SP) by the calling routine
prior to the call if the call is to an imported routine or the call is a pointer-
based call (which may or may not be cross-fragment). This ensures that
the calling routine can still access its own direct data area upon return.
Local calls do not need to save this value.

e 'The Link Register (LLR) value is saved at 8(SP) by the called routine if
it chooses to do so.

¢ The Condition Register (CR) value may be saved at 4(SP) by the called
routine. As with the Link Register value, the called routine is not
required to save this value.

e 'The stack pointer is always saved by the calling routine as part of its
stack frame.

Note that the linkage area is at the top of the stack, adjacent to the stack
pointer. This positioning is necessary so the calling routine can find and
restore the values stored there and also to enable the called routine to find
the caller’s parameter area. This placement means that a routine cannot
push and pop parameters from the stack once the stack frame is set up.
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The stack frame also includes space for the called routine’s local variables. In
general, the general-purpose registers GPR13 through GPR31 and the floating-
point registers FPR14 through FPR31 are reserved for the routine’s local
variables. However, if the routine contains more local variables than would fit in
the registers, it uses additional space on the stack. The size of the local variable
area is determined at compile time; once a stack frame is allocated, the size of
the local variable area cannot change.

Prologs and Epilogs

"The called routine is responsible for allocating its own stack frame, making sure
to preserve 16-byte alignment on the stack. This action is accomplished by the
prolog before entering the actual routine. The compiler-generated prolog code
does the following:

¢ Decrements the stack pointer to account for the new stack frame.

e Writes the previous value of the stack pointer to its own linkage area. This
procedure ensures that the stack can be restored to its original state after
returning from the call.

e Saves all nonvolatile general-purpose and floating-point registers into the
saved-registers area. Note that if the called routine does not change a
particular nonvolatile register, it does not save it.

e Saves the Link Register and Condition Register values in the caller’s
linkage area, if needed.

Note: The order in which the prolog executes these actions is determined by
convention, not by any requirements of the PowerPC runtime architecture.

The following is a sample of prolog code. Note that the order of these actions
differs from the order previously described.

linkageArea: set 24 : size in PowerPC environment
params: set 32 ; callee parameter area
localVars: set 0 ; callee local variables
numGPRs: set 0 ; volatile GPRs used by callee
numFPRs: set 0 ; volatile FPRs used by callee)

spaceToSave: set linkageArea + params + localVars
spaceToSave: set spaceToSave + 4*numGPRs + 8*numFPRs

.moo: ; PROLOG
mflr  rO, ; extract return address
stw r0,8(SP) : save the return address

stwu  SP, -spaceToSave(SP) ; skip over caller save area
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After the called routine exits, the epilog code executes, which does the
following:

e Restores the nonvolatile general-purpose and floating-point registers
that were saved in the stack frame.

e Restores the Condition Register and Link Register values that were
stored in the linkage area.

e Restores the stack pointer to its previous value.

e Returns to the calling routine using the address stored in the Link
Register.

Below is some sample epilog code.

; EPILOG
Iwz r0,spaceToSave(SP)+8 ; get the return address
mtlr RO ; reset Link Register
addic SP,SP,spaceToSave ; restore stack pointer
blr ; return

"The calling routine is responsible for restoring its GPR2 value immediately
after returning from the called routine.

The Red Zone

The space beneath the stack pointer, where a new stack frame would
normally be allocated, is called the Red Zone. This area, as shown in
Figure 3., may be used for any purpose as long as a new stack frame does
not need to be added to the stack.

Figure 3.  The Red Zone
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For example, the Red Zone may be used by a leaf procedure. A leaf procedure
is a routine that does not call any other routines. Since it does not call any other
routines, it does not need to allocate a parameter area on the stack.
Furthermore, if it does not need to use the stack to store local variables, it need
save and restore only the nonvolatile registers that it uses for local variables.
Since by definition no more than one leaf procedure is active at any time, there
is no possibility of multiple leaf procedures competing for the same Red Zone
space.

Aleaf procedure does not allocate a stack frame nor does it decrement the stack
pointer. Instead it stores the Link Register and Condition Register values in the
linkage area of the routine that calls it (if necessary) and stores the values of any
nonvolatile registers it uses in the Red Zone. This streamlining means that a leaf
procedure’s prolog and epilog do only minimal work; they do not have to set up
and take down a stack frame.

When an exception handler is called, the Exception Manager automatically
decrements the stack pointer by 224 bytes (the largest possible area used to save
registers), to skip over any possible Red Zone information, and then restores the
stack pointer when the handler exits. The Exception Manager does this because
an exception handler cannot know in advance if a leaf procedure is executing at
the time the exception occurs. If you are writing code that modifies the stack at
interrupt time, you must similarly decrement the stack pointer by 224 bytes to
preserve any Red Zone information and restore it after the interrupt call.

Note: The value of 224 bytes is the space occupied by nineteen 32-bit general-
purpose registers plus eighteen 64-bit floating-point registers, rounded up to the
nearest 16-byte boundary. If a leaf procedure’s Red Zone usage would exceed
224 bytes, then it must set up a stack frame just like routines that call other
routines.

Routine Calling Conventions

"This section details the process of passing parameters or other information to a
routine in the PowerPC runtime environment.

Note: These parameter passing conventions are part of Apple’s standard for
procedural interfaces. Object-oriented languages may use different rules for
their own method calls. For example, the conventions for C++ virtual function
calls may be different from those for C functions.
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Indirect Calls

A routine that branches indirectly to another routine must store the target
of the call in the GPR12 register. This convention applies to all code used
with the dynamic compiler flag, which is on by default for all user code. It
does not apply to kernel or driver code. Standardizing the register used to
store the target address makes it possible to optimize dynamic code
generation in the future. All code mustadhere to this standard from the very
first release of Mac OS X compilers in order to take advantage of it later.

As an example, the following code:

foo() {
bar();

}

Compiled with this command:

% cc -arch ppc -S -O foo.c

Produces the following assembly output:

text
.align 2
.globl _foo
_foo:
mflr rO
stw r0,8(r1)
stwu r1,-64(rl)
# end prolog
bl L_bar$stub
# start epilog
addirl,rl,64
Iwz r0,8(rl)
mtir r0
blr

.picsymbol_stub
L_bar$stub:
.indirect_symbol _bar
mflr rO
bl LO$_bar
LO$_bar:
mflr r11
mtlr r0
# load value to branch to into r12 from lazy pointer location
addis r11,r11,hal6(L_bar$lazy ptr-LO$_bar)
Iwz r12,l016(L_bar$lazy_ptr-OLO$_bar)(r1l)
# move branch location to the counter register
mtctr r12
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addir11,r11,lo16(L_bar$lazy ptr-LO$_bar)
betr
lazy_symbol_pointer
L_bar$lazy_ptr:
.indirect_symbol _bar
.long dyld_stub_binding_helper

Because the target address needs to be stored in a register in any event, this
convention simply standardizes what register to use. Routines that may have
been called directly should not depend on the value of GR12, because in the
case of a direct call its value is not defined.

Parameters

A routine can have a fixed or variable number of arguments. In an ANSI-style C
syntax definition, a routine with a variable number of arguments typically
appears with ellipsis points (...) at the end of its input parameter list.

A variable-argument routine may have several required (that is, fixed)
parameters preceding the variable parameter portion. For example, the
routine definition

mooColor( number, [colorl. . .])
gives no restriction on the number of co/or arguments, but you must always
precede them with a #number argument. Therefore, number is a fixed parameter.

"Typically the calling routine passes parameters in registers. However, the
compiler generates a parameter area in the caller’s stack frame that is large
enough to hold all parameters passed to the called routine, regardless of how
many of the parameters are actually passed in registers. There are several
reasons for this scheme:

e [t provides the callee with space to store a register-based parameter if it
wants to use one of the parameter registers for some other purpose (for
instance, to pass parameters to a subroutine).

¢ Routines with variable-length parameter lists must often access their
parameters from RAM, not from registers. Such routines must reserve eight
registers (32 bytes) in the parameter area to hold the parameter values.

¢ To simplify debugging, some compilers may write parameters from the
parameter registers into the parameter area in the stack frame; this allows
you to see all the parameters by looking only at that parameter area.

You can think of the parameter area as a data structure that has space to hold all
the parameters in a given call. The parameters are placed in the structure from
left to right according to the following rules:
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o All parameters are aligned on 4-byte (word) boundaries.

e Noncomposite parameters smaller than 4 bytes occupy the low order
bytes of their word.

e Composite parameters (such as data structures) are followed by padding
to make a multiple of 4 bytes, with the padding bytes being undefined.

For a routine with fixed parameters, the first 8 words (32 bytes) of the data
structure, no matter the size of the individual parameters, are passed in
registers according to the following rules:

e The first 8 words are placed in GPR3 through GPR10 unless a floating-
point parameter is encountered.

¢ Floating-point parameters are placed in the floating-point registers
FPR1 through FPR13.

e Ifafloating-point parameter appears before all the general-purpose
registers are filled, the corresponding GPRs that match the size of the
floating-point parameter are skipped. For example, a f1oat item causes
one (4-byte) GPR to be skipped, while an item of type double causes
two GPRs to be skipped.

e [If the number of parameters exceeds the number of usable registers,
the calling routine writes the excess parameters into the parameter area
of its stack frame.

Note: Currently the parameter area must be at least 8 words (32 bytes) in size.
For example, consider a routine mooFunc with this declaration:
void mooFunc (SInt32 i1, float 1, double d1, SInt16 s1, double d2,
UInt8 c1, UInt16 s2, float f2, SInt32 i2);

"To see how the parameters of mooFunc are arranged in the parameter area on
the stack, first convert the parameter list into a structure, as follows:

struct params {

Sint32 p_il;
float p_f1;
double p_di;
Sint16 p_s1;
double p_d2;
Uint8 p_c1,;
uint16 p_s2;
float p_f2;
Sint32 p_i2;
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"This structure serves as a template for constructing the parameter area on the
stack. (Remember that, in actual practice, many of these variables are passed in
registers; nonetheless, the compiler still allocates space for all of them on the
stack, for the reasons just mentioned.)

The “top” position on the stack is for the field pi_1 (the structure field
corresponding to parameter i1). The floating-point field p_f1 is assigned to the
next word in the parameter area. The 64-bit double field p_d1 is assigned to
the next two words in the parameter area. Next, the short integer field p_s1 is
placed into the following 32-bit word; the original value of p_s1 is in the lower
half of the word, and the padding is in the upper half. The remaining fields of
the params structure are assigned space on the stack in exactly the same way,
with unsigned values being extended to fill each field to make it a 32-bit word.
The final arrangement of the stack is illustrated in Figure 4.. (Because the stack
grows down, it looks as though the fields of the params structure are upside
down.)

Figure 4.  The organization of the parameter area of the stack
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"To see which parameters are passed in registers and which are passed on the
stack, you need to map the stack, as illustrated in Figure 4., to the available
general-purpose and floating-point registers. Therefore, the parameter i1 is
passed in GPR3, the first available general-purpose register. The floating-point
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parameter f1 is passed in FPR1, the first available floating-point register.
"This action causes GPR4 to be skipped.

The parameter d1 is placed into FPR2 and the corresponding general-
purpose registers GPR5 and GPR6 are unused. The parameter s1 is placed
into the next available general-purpose register, GPR7. Parameter d2 is
placed into FPR3, with GPR8 and GPR9 masked out. Parameter c1 is
placed into GPR10, which fills out the first 8 words of the data structure.
Parameter s2 is then passed in the parameter area of the stack. Parameter £2
is passed in FPR4, since there are still floating-point registers available.
Finally, parameter i 2 is passed on the stack. Figure 5. shows the final layout
of the parameters in the registers and the parameter area.

Figure 5.  Parameter layout in registers and the parameter area
GPR3 GPR4 GPR5 GPR6 GPR7 GPR8 GPR9 GPR10
KR si|] | |«
FPR1 : FPR2 FPR3 FPR4
EE

‘ Parameter area

If you have a C routine with a variable number of parameters (that is, one
that does not have a fixed prototype), the compiler cannot know whether to
pass a parameter in the variable portion of the routine in the general-
purpose (that is, fixed-point) registers or in the floating-point registers.
T'herefore, the compiler passes the parameter in both the floating-point and
the general-purpose registers, as shown in Figure 6..

Figure 6.  Passing a variable number of parameters
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The called routine can access parameters in the fixed portion of the routine
definition as usual. However, in the variable-argument portion of the routine,
the called routine must copy the GPRs to the parameter area and access the
values from there. The code below shows a routine that accesses values by
walking through the stack.

double dsum (int count, ...)

{
double sum = 0.0;
double * arg = (double *) (&count + 1 /* pointer arithmetic */);
while (count>0) {
sum += *arg;
arg +=1; /* pointer arithmetic */
count -=1;
}
return sum;
}

Function Return

In the PowerPC runtime environment, floating-point function values are
returned in register FPR1 (or FPR1 and FPR2 for long double values). Other
values are returned in GPR3 as follows:

¢ Functions returning simple values smaller than 4 bytes (such as type SInts,
Boalean, or SInt16) place the return value in the least significant byte or
bytes of GPR3. The most significant bytes in GPR3 are undefined.

¢ Functions returning 4-byte values (such as pointers, including array
pointers, or types SInt32 and UInt32) return them normally in GPR3.

¢ [fa function returns a composite value (for example, a struct or union data
type) or a value larger than 4 bytes, a pointer must be passed as an implicit
left-most parameter before passing all the user-visible arguments (that is,
the address is passed in GPR3, and the actual parameters begin with GPR4).
"The address of the pointer must be a memory location large enough to hold
the function return value. Since GPR3 is treated as a parameter in this case,
its value is not guaranteed on return.
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Register Preservation

"The following table lists registers used in the PowerPC runtime
environment and their volatility in routine calls. Registers that retain their
value after a routine call are called nonvolatile. All registers are 4 bytes long.

Type

Register

Preserved by a

routine call?

Notes

General- purpose register GPRO

No

GPR1 See next column Used as the stack pointer to store
parameters and other temporary data
items.

GPR2 See next column Used as the base register to access the
direct data area. GPR2 is preserved by
direct calls; for indirect calls the caller
must restore the value after the call.

GPR3 See next column Holds the return value or the address of
the return value in function calls. For
routine calls that do not return a value,
GPR3 is used to pass parameter values.

GPR4-GPR10 No Used to pass parameter values in
routine calls.

GPR11 No

GPR12 No Set to the value of the target before an
indirect call for dynamic code
generation. Unless a routine knows it's
been called indirectly, it should not
depend on the value of this register.

GPR13-GPR31 Yes

Floating- point register ~ FPRO No

FPR1-FPR13 No Used to pass floating- point parameters
in routine calls.

FPR14-FPR31 Yes

Link Register LR No Stores the return address of the calling
routine during a routine call.

Count Register CTR No

Fixed-point exception XER No

register

Condition Registers CRO-CR1 No

23
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Type Register Preserved by a Notes
routine call?
Condition Registers CR2-CR4 Yes
(continued)
CR5-CR7 No
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