

July 2000

© Apple Computer, Inc. 2000



I N S I D E M A C O S X

System Overview

Preliminary



Apple Computer, Inc.
© 2000 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Simultaneously published in the
United States and Canada

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3

Preliminary



 Apple Computer, Inc. July 2000

Contents

Chapter 1

About This Book

9

Why Read This Book 9
Further Investigations 11

Installed Developer Documentation 11
Other Apple Publications 12
Information on BSD 12
Other Information on the Web 13

Chapter 2

System Technologies

15

The User Experience 16
Aqua 17
The Desktop and the Finder 18
Application Support 19
Multiple Users 21
Internationalization 21
Application Extensibility 22
Exported Application Services 23
Other Parts of the User Experience 24

Darwin 24
Mach 24
BSD 26
Device-Driver Support 26
Networking Extensions 27
File Systems 27
Darwin and Open Source Development 29

4

Preliminary



 Apple Computer, Inc. July 2000

C O N T E N T S

Graphics and Imaging 29
Quartz 30
QuickDraw 31
OpenGL 32
QuickTime 32
Printing 33
Apple Type Solution 34

Networking and the Internet 34
Media Types 35
Standard Protocols 35
Legacy Network Services and Protocols 37
Routing and Multihoming 37
Personal File and Web Services 37

Advanced Hardware Features 38
USB 38
FireWire 39
Velocity Engine 39
Airport 39

Chapter 3

System Architecture

41

A Layered Perspective 42
Application Environments 47

Carbon 48
Cocoa 50
Java 51

The Graphics and Windowing Environment 54
Core Graphics Services 56
Core Graphics Rendering 57

The Printing System 59
User Interface 59
Architecture Summary 60

C O N T E N T S

5

Preliminary



 Apple Computer, Inc. July 2000

Printer Discovery 63
The Printing Process 63

Other Application Services 64
Process Manager 64
Carbon Event Manager 65
The Pasteboard 65

Core Services 65
Carbon Managers 66
Core Foundation 67
Apple Events 70
Open Transport 70

Tracking a User Event 71

Chapter 4

Bundles

75

Benefits of Using Bundles 76
Anatomy of a Bundle 77
The Finder and Bundles 82
Types of Bundles 83

An Application’s Main Bundle 84
Framework Bundles 84
Loadable Bundles and Dynamic Linking 84

Localized Resources 85
Localized Character Strings 86
Search Algorithm 86
Bundles and the Resource Manager 88

Chapter 5

Application Packaging

91

An Application Is a Bundle 91
Application Frameworks, Libraries, and Helpers 93

Private Frameworks 94
Shared Frameworks and the Central Directory 95
Other Shared Application Code 96

6

Preliminary



 Apple Computer, Inc. July 2000

C O N T E N T S

Applications and Loadable Bundles 97
User Resources in Applications 98

Application Help 99
Application Preferences 100
Document Resources 100

Chapter 6

Frameworks

103

The Framework as a Library Package 104
The Internal Structure of Frameworks 105
Standard Locations for Frameworks 107

Dynamic Shared Libraries 108
Framework Versioning 110

Major Versions 111
Minor Versions 112
Versioning Summary and Guidelines 113

Guidelines for Major Versioning 114

Chapter 7

Umbrella Frameworks

117

Kinds of Frameworks 118
The Purpose of Umbrella Frameworks 119
Linking and Including Guideline 121
The Structure of an Umbrella Framework 122
Restrictions on Subframework Linking 124

Chapter 8

The File System

125

How the File System Is Organized 125
File-System Domains 127
The System and Local Domains 128
The User Domain 130
The Network Domain 132
The Library Folder 134

C O N T E N T S

7

Preliminary



 Apple Computer, Inc. July 2000

The Developer Folder 136
Searching Within the File-System Domains 138

Differences Between HFS+ and UFS 139
Aliases and Symbolic Links 140
Resource Forks 141

Chapter 9

The Desktop

145

The Role of the Desktop 145
Desktop Interfaces to Applications 147

Information Property Lists 147
Information Stored by the Desktop 148

Collecting Application Information 148
The Desktop Folder 149
Finder Attributes 150

The Handling of Applications and Documents 150
The Finder and File Operations 152

Copy and Move Operations 153
Management of Aliases and Symbolic Links 153

Chapter 10

Software Configuration

155

Property Lists 155
Information Property Lists 156

Document Configuration 157
An Example 158
Standard Keys 161
Finder Keys 163
Application Package Keys 165

The Preferences System 166
How Preferences Are Stored 167
Preference Domains 168
The defaults Utility 169

8

Preliminary



 Apple Computer, Inc. July 2000

C O N T E N T S

Chapter 11

Inter-Environment Issues

171

Tasks and Processes 171
Threading Packages 172

Layering Details 174
Usage Guidelines 174

Interprocess Communication 175
Library Managers and Executable Formats 177

Comparing the Runtime Environments 177
CFM and dyld 177
PEF and Mach-O 178
Code-Generation Models 178

Vector Libraries 179
CFM Executable and Non-Carbon APIs 179
Should You Use CFM or dyld? 180

Glossary

181

Index

189

Why Read This Book

9

Preliminary



 Apple Computer, Inc. July 2000

C H A P T E R 1

1 About This Book

With Mac OS X, Apple is reasserting its leadership not only in operating systems
but in the advanced technologies and design sensibility that are the hallmarks of
that operating system. While preserving the famed ease-of-use and personality of
its predecessors, Mac OS X is an industrial-strength modern operating system
engineered for reliability, stability, scalability and phenomenal performance. As
such, it lays the foundation for another decade of innovation.

This book introduces software developers to Mac OS X. It describes the operating
system’s features and architecture. And it explains some of the concepts and
conventions of Mac OS X that are of interest and value to those developing software
for the platform.

Why Read This Book

Inside Mac OS X: System Overview

 is intended for anyone who wants to develop
software for Mac OS X. But it is also a resource for people who are just curious about
Mac OS X as a development and deployment platform. Whether your background
is software development for Mac OS or UNIX or Windows or any other platform—
especially Open Source developers working with Darwin—you are apt to find
something of value in this book.

Preliminary documentation:

This version of

Inside Mac OS X: System Overview

 is
in a preliminary stage of completion. The final version will contain new and
updated material. This preliminary version of the book is offered as background
information for developers installing the DP4 (Developer Preview 4) version of
Mac OS X.

10

Why Read This Book

Preliminary



 Apple Computer, Inc. July 2000

C H A P T E R 1

About This Book

This book describes the Mac OS X operating system from both a functional and
architectural perspective and explains some of the concepts, services, and
conventions common to the three primary development environments: Carbon,
Cocoa, and Java. The book attempts to be “API-agnostic,” avoiding as much as
possible details specific to a programming interface or application environment.

The book has the following chapters:

�

System Technologies

. Describes the user experience and summarizes the
features and capabilities of the operating system, including the core operating
system called Darwin, the graphics and windowing system, and supported
networking services and protocols.

�

System Architecture

. Provides a high-level discussion of the design of
Mac OS X, describing the various layers of system software. Also explains how
events are handled and discusses some general programming issues.

�

Bundles

. Describes bundles, the basic packaging model for software on
Mac OS X.

�

Application Packaging

. Offers details of application bundles and how they
package their various resources.

�

Frameworks

. Describes frameworks, another type of bundle, which are used to
package dynamic shared libraries and their supporting resources.

�

Umbrella Frameworks

. Provides information about umbrella frameworks, the
primary model for packaging Apple-provided frameworks.

�

The Desktop and the File System

. Discusses the interfaces between the Desktop
and applications. It explains how the Finder (the major component of the
Desktop) handles various tasks, such as determining application ownership of
documents and copying files between volumes of different formats. Finally, this
section discusses topics related to the file system, such as the standard directory
layout, resource forks, and aliases versus symbolic links.

�

Software Configuration

. Describes the basic mechanisms for configuring
applications and other bundles and for handling user preferences.

�

Inter-Environment Issues

. Discusses some of the programming issues arising
from multiple application environments and layered architecture in Mac OS X.

Future versions of the book will include additional material.

C H A P T E R 1

About This Book

Further Investigations

11

Preliminary



 Apple Computer, Inc. July 2000

Further Investigations

This book serves as a starting point. It defines the broad conceptual terrain of
Mac OS X, and you must go elsewhere to learn about details mentioned or only
suggested by the “map.” For example, for information about creating a bundle you
should see the documentation on Apple’s developer tools.

This section lists sources of Mac OS X information for software developers. It is by
no means an exhaustive list, and Apple’s contribution to this list will grow.

Installed Developer Documentation

When you install the Developer package of Mac OS X, the installer puts developer
documentation into four locations:

�

Frameworks. Information that is inextricably associated with a framework is
usually installed in a localized subdirectory of the framework. This method of
packaging ensures that the documentation moves with the framework when
and if it moves (or is copied) to another location. It also makes it possible to have
localized versions of the documentation (although English currently is the only
supported localization).

�

Development applications. Help information on applications such as Project
Builder and Interface Builder is installed with the application. When users
request it from the Help menu, the application launches Help Viewer to display
it.

�

Example code. A variety of sample programs are installed in

/System/
Developer/Examples

 showing you how to perform common tasks using the
primary Mac OS X application environments—Carbon, Cocoa, and Java

�

/System/Developer/Documentation

. All information that is not specific to
frameworks or development applications is installed here. The installer also
creates in this location symbolic links to the framework documentation.

12

Further Investigations

Preliminary



 Apple Computer, Inc. July 2000

C H A P T E R 1

About This Book

Apple’s developer documentation uses Apple Help, and specifically the Help
Viewer, as a presentation and access mechanism. To view and search developer
documentation you use a special user interface for the Help Viewer that bears the
title “Developer Center.” To access the Developer Center:

1. Choose Help Center from the Desktop’s Help menu.

The Help Center is used for accessing user documentation.

2. Click the Developer Center link on the first (home) page of the Help Center.

3. To return to the Help Center, click the Help Center link on the home page of the
Developer Center.

The home page of the Developer Center lists links to the “books” that are currently
installed. The behavior of the Help Viewer is very much like a typical browser.
However, links to external URLs will open those URL resources in your preferred
Web browser.

The scope of a search using the Developer Center is determined by your current
location within the set of books. If you are browsing through a particular book—
say, Core Foundation Reference—and you search for a term or API symbol, the
Help Viewer first looks at the Apple Help index for that book. If it cannot find the
term or symbol, it searches all books in the Developer Center. If you perform a
search from the home page of the Developer Center, the Help Viewer searches the
indexes of all books belonging to the Developer Center.

Other Apple Publications

Apple is planning a series of

Inside Mac OS X

 books. This book, the

System Overview

,
is the first of that series. You can obtain other books in this series (as they become
available) using the publish-on-demand arrangement Apple has with Fatbrain.com.

To obtain your printed copy of an

Inside Mac OS X

 book, use your Web browser to
access the page at

www1.fatbrain.com/documentation/apple

. Then follow the
directions. The book should be delivered to you within a few business days.

Information on BSD

Many developers who are new to Mac OS X are also new to BSD, an essential part
of the the operating system’s kernel environment. BSD (for Berkeley Software
Distribution) is a variant of UNIX. Several excellent books on BSD and UNIX are

C H A P T E R 1

About This Book

Further Investigations

13

Preliminary



 Apple Computer, Inc. July 2000

available in most technical bookstores (or bookstores with technical sections). One
of the more useful books for beginners is

A Quarter Century of UNIX

 by Peter H.
Salus (Addison-Wesley, 1994, ISBN 0-201-54777-5).

You can also use the World Wide Web as a resource for information on BSD. Several
organziations, which make available their own free versions of BSD, maintain
websites with manuals, FAQs, and other sources of information:

�

The FreeBSD project,

http://www.FreeBSD.org

�

The NetBSD project,

http://www.NetBSD.org

�

the OpenBSD project,

http://www.OpenBSD.org

See the bibiliography in

Inside Mac OS X: The Kernel Environment

 for more
references.

Other Information on the Web

Apple maintains several websites where developers can go for general and
technical information on Mac OS X.

�

Apple Product Information (

www.apple.com/macosx

). Provides general
information on Mac OS X.

�

Apple Developer Connection—Developer Documentation
(

developer.apple.com/techpubs

). Features the same documentation that is
installed on Mac OS X, except that often the documentation is more up-to-date.
Also includes legacy documentation.

�

AppleCare Tech Info Library (

til.info.apple.com

). Contains technical articles,
tutorials, FAQs, technical notes, and other information.

�

Apple Developer Connection—Mac OS X (

developer.apple.com/macosx

). Offers
SDKs, release notes, product notes and news, and other resources and
information related to Mac OS X.

15

Preliminary



 Apple Computer, Inc. July 2000

C H A P T E R 2

2 System Technologies

Mac OS X is both a radical departure from previous Macintosh operating systems
and a natural evolution from them. It carries on the Macintosh tradition of
ease-of-use, but more than ever it is designed not only to be easy to use but a
pleasure to use.

This next-generation operating system is a synthesis of technologies, some new and
some standard in the computer industry. It is firmly fixed on the solid foundation
of a modern core operating system, bringing benefits such as protected memory and
preemptive multitasking to Macintosh computing. Mac OS X sports a sparkling
new user interface capable of visual effects such as translucence and drop shadows.
These effects as well as the sharpest graphics ever seen on a personal computer are
made possible by a graphics technology that Apple developed specifically for Mac
OS X.

But Mac OS X is more than a sophisticated core and a pretty face. With its multiple
application environments, virtually all Macintosh applications can run on it. And
with its support for many networking protocols and services, Mac OS X is the
ultimate platform for using and enjoying the Internet. It also offers a high degree of
interoperability with other operating systems because of its multiple volume
formats and its conformance with established and evolving standards.

From a functional perspective, the most important components of Mac OS X are

�

Aqua, the human-interface design behind the user’s experience

�

the application environments Classic, Carbon, and Cocoa

�

the windowing and graphics system, as implemented by Quartz, QuickTime,
and OpenGL

�

Darwin, the advanced core of the operating system

16

The User Experience

Preliminary



 Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

Figure 2-1 depicts the general dependencies between these components. The rest of
this section describes what these and other technologies of Mac OS X have to offer.

Figure 2-1

A functional view of Mac OS X

The User Experience

The user environment for Mac OS X is similar to what Macintosh users have become
comfortably familiar with. But it is also different in important and even spectacular
ways. It features a radical new design for the user interface, a new infrastructure for
localizing the interface, a new way to add application features dynamically, and
both new and familiar mechanisms for exporting and accessing the services of other
applications.

And, of course, the new user experience draws from the benefits obtained through
the core of the operating system (see “Darwin” (page 24)). A Macintosh remains
stable even when an application crashes, and no single application or task can now
hog processing resources; applications can execute concurrently.

This section describes the experience that Mac OS X offers to users and the features
and applications that make the experience a productive and enjoyable one.

Classic Carbon Cocoa

OpenGL

Darwin

QuickTime

Aqua

Quartz

C H A P T E R 2

System Technologies

The User Experience

17

Preliminary



 Apple Computer, Inc. July 2000

Aqua

When Apple designed Aqua, the new graphical user interface for Mac OS X, it had
one goal in mind: to create a modern operating system that is not only easy to use,
but is more appealing than any Macintosh you’ve ever seen. As “aqua” suggests,
the properties of water infuse the lucid appearance of Mac OS X. Aqua brings a
computer to life with color, depth, clarity, translucence, and motion. Buttons look
like polished blue gems, active buttons pulse, windows seem to have depth with
their drop shadows, minimized windows swoop into their dock icon like a genie
into her bottle.

One striking characteristic of Aqua is its icons. In earlier operating systems, icon
sizes were constrained by the limitations of screen resolution. With today’s
dramatically improved display sizes and resolution levels, Aqua sheds these
constraints. It offers richly colored and photo-quality icons that are adjustable up to
128-by-128 pixels. Its icons are more legible, enabling such features as in-place
document previews.

Aqua also improves the user’s experience by better management of screen real
estate. Operating systems are noted for cluttering up screens by spawning window
after window, especially when there are deeply structured file systems and multiple
control panels. Mac OS X eliminates the problem of proliferating windows by
focusing the activities of an application in a single window.

A prime example of this new approach is how Mac OS X handles common
application operations such as opening or printing documents. Time was, when the
operating system presented a dialog box to print or save a document, you had to
know which document the dialog box was for, even though you might have many
documents open at a time. Mac OS X introduces a new type of dialog box that
attaches to a document and makes their relationship clear. These new dialog boxes
appear to slide out from underneath the window title, and their translucent quality
makes them look as though they’re floating above the document. Also, these dialog
boxes are no longer modal, hijacking your computer and demanding your
immediate attention. You can proceed to other tasks before dismissing the dialog
box—without having to interrupt what you’re doing.

Single Window Mode is a optional feature users can turn on to help them manage
screen space. It applies the concept of a single window to the whole operating
system, eliminating the need to search for or arrange windows. When you’re in
Single Window Mode the computer makes the current window the active window

18

The User Experience

Preliminary



 Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

and automatically hides all the other open windows. When you want to work on
another document or application, Mac OS X automatically removes the currently
active document and makes the desired document the only active one.

In many respects the Aqua interface is reminiscent of earlier user interfaces for
Macintoshes. The Mac OS has long been admired for its ease of use. Aqua
incorporates many of the user-interface qualities and characteristics Macintosh
users expect in their computers. Ease of use is factored into just about every feature
and capability in the system.

Many of the effects of Aqua are made possible by Quartz, the 2D graphics and
windowing technology developed by Apple. See “Quartz” (page 30) for more on
this technology.

The Desktop and the Finder

A big part of the Aqua experience for users is the design of the desktop and the
Finder, the primary interface for file-system interaction. Users are apt to notice two
major innovations in this area: the Dock and the way the Finder displays the
elements of the file system.

The Dock reduces desktop clutter. It is an area at the bottom of the screen that holds
just about anything you want to keep handy for instant access: folders, applications,
documents, storage devices, minimized windows, QuickTime movies, links to
websites. An icon identifies each item stored in the Dock; these icons often provide
useful feedback about what they represent. For example, the icon for Mail tells you
if you have any new messages waiting to be read. If you store an image, the Dock
shows it in preview mode, so you can tell what it is without opening it. And because
you can minimize running applications into the Dock, a quick look at the bottom of
the screen tells you what applications you’re currently running. To switch between
tasks, simply click the application or document icon you want to start using, and it
becomes the new active task. If you don’t know what an icon represents, you can
move your mouse pointer over it and the title of the document, folder, or
application appears.

The Dock holds as many things as you want to keep there. As you add items, the
Dock expands until it reaches the edge of the screen. Once it reaches that point, the
icons in the Dock shrink proportionately to accommodate additional items. To
make the smaller icons more legible, however, Mac OS X includes a feature called
magnification: just pass the cursor over the icons, and they magnify to your preset
maximum resolution.

C H A P T E R 2

System Technologies

The User Experience

19

Preliminary



 Apple Computer, Inc. July 2000

The new Finder for Mac OS X has a simple navigation interface that is fully
contained within a single window. Large buttons instantly transport you to the
most frequently accessed areas on your computer: your home directory, your
applications, your documents, even to the people with whom you often
communicate. The items that Finder displays are not only folders, applications, and
documents, but other commonly accessed items such as mounted network
volumes, external storage devices, CD-ROMs, and digital cameras.

In addition to the icon and list views Macintosh users are familiar with, each Finder
window can be set to the new viewing mode called column view. This mode is ideal
for navigating deep file systems; each click on a folder displays the contents of that
folder in the next column to the right. Column view also maintains a history of your
navigation forays so you can always find your way back.

When you double-click Finder items in icon or list view, the Finder no longer brings
up a separate window. Instead, the Finder replaces the old folder view within the
single Finder window. By focusing the file system into a single window view, the
Finder reduces the proliferation of windows, a key design goal. Despite this default
behavior, nothing prevents you from opening as many Finder windows as you
wish.

Application Support

Part of the user experience is a near-seamless interaction among the various pieces
of Mac OS X. This might be expected behavior for any operating system, but it is
quite remarkable. From BSD to QuickTime, Mac OS X consists of technologies with
widely different histories and based on different standards and conventions. A
single Mac OS X system hosts volumes of different formats, supports different
network file-sharing protocols, and can run applications based on radically
different APIs. Mac OS X’s imposition of unity over this rich technological diversity
is one of its singular accomplishments.

20

The User Experience

Preliminary



 Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

Instead of requiring users and developers to switch over abruptly to a brand new
operating system, Apple has designed Mac OS X itself as a staging ground for a
gradual transition. This is especially true in the area of application libraries and
runtimes. Mac OS X supports three application environments, each intended for a
particular type of application:

�

The Classic environment lets you run all your Mac OS 9 applications. Because
Classic is a compatibility environment, it does not support new OS X features,
such as Aqua or core architectural enhancements provided by Darwin.

�

The Carbon environment runs all Mac OS 8 and Mac OS 9 applications whose
code has been optimized for Mac OS X. By converting their code to use the new
Carbon APIs, application developers can ensure that applications take
advantage of protected memory, preemptive multitasking, and other features of
Darwin.

�

The Cocoa environment offers an advanced object-oriented programming
environments for creating the best next-generation applications.

Mac OS X makes it possible to copy (or cut) almost any piece of data and paste it
into an application executing in another environment. It also enables dragging of
Finder objects (and the data they represent) between most environments. Mac OS X
performs all necessary conversions when, for example, a file stored on a Mac OS
Extended (HFS+) volume is copied to a UFS volume.

A new way of packaging applications makes it possible for multiple application
executables to coexist in a directory that, to a user, looks and behaves like a
double-clickable file. Included in this directory are the resources the executables
need, such as images, sounds, localized strings, plug-ins, and private and shared
libraries. With this scheme, you can install the same application package on a Mac
OS X and a Mac OS 9 system and users can launch and use the application. Because
an application package contains everything an application needs to execute on
more than one system, certain advanced features become easier to realize, such as
remotely executing an application on a server, distributing applications over the
Internet, and simplified installation and uninstallation. See the chapter
“Application Packaging” (page 91) for more information.

C H A P T E R 2

System Technologies

The User Experience

21

Preliminary



 Apple Computer, Inc. July 2000

Multiple Users

Users work on a Mac OS X system in a personally customized environment. They
can select a desktop pattern, their preferred language, the applications to start up at
boot-time, and a number of other preferences. Whenever they log in to their
account, all of their choices are restored.

A user’s personalized environment is potentially one of many such environments.
Another user can log in to the same computer and have an entirely different set of
preferences define his or her computing environment. Mac OS X enforces secure
boundaries between one user’s data and programs and another’s. Each account is
password-protected and users cannot execute applications or edit or even read
documents in another user’s folder without the owner’s permission. The system
gives each user’s folder (and all it contains) a default set of permissions that the user
can thereafter change to restrict access or grant greater access to other users.

More powerful than this single (local) machine/multiple users model is the
multiple machines/multiple users model—in other words, network accounts,
which Mac OS X makes possible through its NetInfo network management system.
People can use any Mac OS X system connected to their NetInfo network—which
can be a home computer, a portable computer, or a system in a friend’s house—to
log in to their account on a remote server. When logged in, they can work in an
environment that is exactly like it was when they last logged out, regardless of
which machine they last used to log in. And if a site is properly administered, their
information on that server is just as secure as any locally maintained data, perhaps
more secure if files on the server are backed up regularly.

The preferences system on Mac OS X is flexible enough to support any combination
of remote and local access. With it, users and administrators can specify sets of
preferences on per-user, per-machine, and per-application bases.

Internationalization

Mac OS X makes it easy to internationalize software. And it does so in such a way
that a single binary can support localizations for multiple languages and regional
dialects. It also lets software developers dynamically add localized resources for
new languages or regions.

Mac OS X includes comprehensive technology to handle text systems used around
the world. This text system provides Unicode, Input methods and general text
handling services. In Mac OS X most software comes in the form of a bundle, of

22

The User Experience

Preliminary



 Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

which an application is just one type (see “Application Support” (page 19)). A
bundle is an opaque directory in the file system that contains one or more
executables and the resources that go with those executables. One of the primary
benefits of bundles is the infrastructure they provide for localizing software. For
users, a bundle appears to be a single file object that can be double-clicked or
dragged from folder to folder.

Localized resources such as image and strings files, as well as Mac OS 9–style
resources (.rsrc), can be put in bundle subdirectories whose names reflect a
particular language or regional dialect (for example, Canadian French). A properly
constructed Mac OS X application (or plug-in or shared library) does not hardwire
paths to the resource files in these directories. Instead, when the application needs
a resource, it uses a special system routine to obtain the localization that best
matches the user’s language preferences.

See the chapters “Application Packaging” (page 91) and “Bundles” (page 75)) for
further information.

Application Extensibility
Plug-ins are modules of code and resources that developers and users can
dynamically add to an application to extend its capabilities. Mac OS X supports
plug-ins with a new, generalized, system architecture. The host application
structures its code so that well-defined areas of functionality can be provided by
external plug-ins. The host does not have to be aware of the implementation details
of the plug-in. When the application is launched, it uses mechanisms provided by
the plug-in architecture to locate its plug-ins and load them. An application can let
users add plug-ins at any time while it is running, and it can also give users the
means for removing plug-ins.

Plug-ins offer a range of benefits for both users and developers. Users can customize
the features of an application to suit their requirements and as new or upgraded
functionality (as encapsulated by a new or replacement plug-in) become available,
users can “plug” these features into the application.

For application developers, plug-ins yield a number of advantages. By providing a
single, standard plug-in architecture, developers no longer have to design and
implement their own architectures. Plug-ins permit an incremental but efficient
implementation of features, making it possible to create a custom version of an
application without changing the original code base. Because they are separate

C H A P T E R 2

System Technologies

The User Experience 23
Preliminary  Apple Computer, Inc. July 2000

modules, plug-ins help developers to isolate and correct bugs in the software. They
also make it possible for third-party developers to add value to an application
without the involvement of the original developer.

For details, see the conceptual and reference documentation for Core Foundation
Bundle Services and Plug-in Services.

Exported Application Services
Applications concurrently running in a Mac OS X system don’t have to run in
isolation. Any application can make a service it provides available to other
applications, and any application interested in that service can take advantage of it.
In addition to copy-paste and dragging operations, Mac OS X gives applications
two mechanisms for sharing resources and capabilities: scripting and the Services
menu.

Scripting in Mac OS X, as in Mac OS 8 and Mac OS 9, employs AppleScript as the
primary scripting language and Apple events as the communication model. You
can program behavior into your applications so they act appropriately upon
receiving AppleScript commands. AppleScript is supported in all application
environments. Users can thus write scripts that link together the services of multiple
applications in different environments.

The Services menu provides another avenue for applications to offer their
capabilities to other applications. These “client” applications don’t have to know
what is offered in advance. How the Service menu works is simple. A user selects a
piece of data in an application, such as a string of text or an image or an icon
representing a folder or file. Then she selects a command from an application listed
in the Services menu and the command is executed on the selection, invoking that
second application.

The Services facility often works as though the user copies data from one
application, pastes it into another, modifies the data, then copies the result and
pastes it back into the original application. For example, a user might select a folder
in the Finder and choose a Services option that compresses the folder and puts it
into an archive format; the result of this operation is placed back in the same place
as the original folder. But the action can be one way as well; for instance, a user
might select a name in a word-processing document and choose a Services
command that looks up the name using an LDAP server, starts up an email
application, and opens a new-message window with the found email address after
the To: line.

24 Darwin
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

Other Parts of the User Experience
As with prior versions of the Mac OS, the user’s experience of Mac OS X begins
when the box containing the CD-ROM is opened. Installation is a simple task and a
set-up assistant has the user up and running locally and on the Internet while her
coffee is still warm. If users have questions, they can use Apple Help to find the
answers.

Mac OS X integrates the Internet into everyday computer use. It makes it easy for
users to access the Internet and to save the locations of favorite websites for later
access. It features Sherlock 2 for searching the Internet or an intranet as well as
searching the local file system (including searching by indexed content). Mac OS X
also includes a powerful, yet incredibly easy-to-use, email application based
completely on Internet standards.

Darwin

Beneath the appealing, easy-to-use interface of Mac OS X is a rock-solid foundation
that is engineered for stability, reliability, and performance. This foundation is a
core operating system commonly known as Darwin, which is also available as Open
Source from www.apple.com/darwin. Darwin integrates a number of technologies,
most importantly Mach 3.0, operating-system services based on 4.4BSD (Berkeley
Software Distribution), high-performance networking facilities, and support for
multiple integrated file systems. Because the design of Darwin is highly modular,
you can dynamically add such things as device drivers, networking extensions, and
new file systems.

For a complete overview of Darwin, see the book Inside Mac OS X: Kernel
Environment.

Mach
Mach is at the heart of Darwin because it performs a number of the most critical
functions of an operating system. Much of what Mach provides is “under the
cover”—typically, applications enjoy the benefits transparently. It manages
processor resources such as CPU usage and memory, handles scheduling, enforces

C H A P T E R 2

System Technologies

Darwin 25
Preliminary  Apple Computer, Inc. July 2000

memory protection, and implements a messaging-centered infrastructure for
untyped interprocess communication, both local and remote. Mach brings many
important advantages to Macintosh computing:

� Protected memory. The stability of an operating system should not depend on
all executing applications being good “citizens” by not writing data to each
others’s (or the system’s) address space; doing so can result in loss or corruption
of information and can even precipitate system crashes. Mach ensures that an
application cannot write on another application’s memory or on the operating
system’s memory. By walling off applications from each other and from system
processes, Mach makes it virtually impossible for a single poorly behaved
application to hurt the rest of the system. And, perhaps best of all, if an
application crashes, it doesn’t affect the rest of the system and so you don’t need
to restart your computer.

� Preemptive multitasking. In a modern operating system, processes share the
CPU efficiently. Mach watches over the computer’s processor, prioritizing tasks,
making sure activity levels are at the maximum, and ensuring that every task
gets the resources it needs. It uses some criteria to decide how important a task
is, and therefore how much time to allocate to it before giving another task its
turn. Your process is not dependent on another process yielding its processing
time.

� Advanced virtual memory. Like other virtual memory systems, Mach maintains
address maps that control the translation of a task’s virtual addresses into
physical memory. Typically only a portion of the data or code contained in a
task’s virtual address space is resident in physical memory at any given time. As
pages are needed, they are loaded into physical memory from storage. Mach
augments these semantics with the abstraction of memory objects. Named
memory objects enable one task (at a sufficiently low level) to map a range of
memory, unmap it, and send it to another task. This capability is essential for
implementing separate execution environments on the same system. In Mac OS
X, virtual memory is “on” all the time.

� Real-time support. Guarantees low-latency access to processor resources for
time-sensitive media applications.

Darwin also enables cooperative multitasking and preemptive and cooperative
threading.

26 Darwin
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

BSD
Integrated with Mach is a customized version of the BSD operating system
(currently 4.4BSD). Darwin’s implementation of BSD includes many of the POSIX
APIs and exports these APIs to the application layers of the system. BSD serves as
the basis for the file systems and networking facilities of Mac OS X. In addition, it
provides several programming interfaces and services, including

� the process model (process IDs, signals, and so on)

� basic security policies such as user IDs and permissions

� threading support (POSIX threads)

� BSD sockets

� kernel APIs

Device-Driver Support
For development of device drivers, Darwin offers an object-oriented framework
called the I/O Kit. The I/O Kit not only facilitates the creation of drivers for Mac OS
X but provides much of the infrastructure those drivers need. It is written in a
restricted subset of C++. The framework, which is designed to support a range of
device families, is both modular and extensible.

Device drivers created with the I/O Kit easily acquire several important features:

� true plug and play

� dynamic device management (“hot plugging”)

� power management (both desktops and portables)

For descriptions of the device drivers developed by Apple, see “Advanced
Hardware Features” (page 38).

C H A P T E R 2

System Technologies

Darwin 27
Preliminary  Apple Computer, Inc. July 2000

Networking Extensions
Darwin gives kernel developers a new technology for adding networking
capabilities to the operating system, Network Kernel Extensions (NKEs). The NKE
facility allows you to create networking modules and even entire protocol stacks
that can be dynamically loaded into the kernel and unloaded from it. NKEs also
make it possible to configure protocol stacks automatically.

NKE modules have built-in capabilities for monitoring and modifying network
traffic. At the data-link and network layers, they can also receive notifications of
asynchronous events from device drivers, such as when there is a change in the
status of a network interface.

For detailed information on developing networking extensions with NKE, see Inside
Mac OS X: Network Kernel Extensions. For descriptions of the networking services
and protocols natively implemented in Darwin, see “Networking and the Internet”
(page 34).

File Systems
The file-system component of Darwin is based on extensions to BSD and an
enhanced Virtual File System (VFS) design. VFS enables a layered architecture in
which file systems are stackable. The file-system component introduces several new
general features:

� Permissions on removeable media. This feature is based on a globally unique ID
registered in a system for each connected removeable device (including USB and
Firewire devices).

� URL-based volume mount, which enables users (via a Desktop command) to
mount such things as AppleShare and Web servers.

� Unified Buffer Cache, which consolidates the buffer cache with the
virtual-memory cache

� Long filenames (255 characters or 755 bytes, based in UTF-8).

28 Darwin
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

Because of its multiple application environments and the various kinds of devices
it supports, Mac OS X must be able to handle file data on many standard volume
formats. Table 2-1 lists the supported formats.

HFS and HFS+ volumes support aliases and UFS volumes support symbolic links
(HFS+ and UFS both support hard links). Although an alias and a symbolic link
share are both lightweight references to a file or directory elsewhere in the file
system—they are semantically different in significant ways. See the chapter “The
File System” (page 125) for descriptions of these and other differences.

Table 2-1 Supported local volume formats

Mac OS
Extended
Format

Also called Hierarchical File System Plus, or HFS+. This is the
default root and booting volume format on Mac OS X. This extended
version of HFS optimizes the storage capacity of large hard disks by
decreasing the minimum size of a single file. It is also the standard
volume format on most Mac OS 8 systems and on Mac OS 9.

Mac OS
Standard
Format

Also called Hierarchical File System, or HFS. This is the volume
format on Mac OS systems prior to Mac OS 8.1. HFS (as does HFS+)
stores resources and data in separate “forks” of a file and makes use
of various file attributes, including type and creator codes.

UFS A “flat” (that is, single-fork) disk volume format, based on the
4.4BSD FFS - Fast File System, that is similar to the standard volume
format of most UNIX operating systems; it supports POSIX
file-system semantics, which are important for many server
applications.

UDF The Universal Disk Format for DVD volumes.

ISO 9660 The standard format for CD-ROM volumes.

C H A P T E R 2

System Technologies

Graphics and Imaging 29
Preliminary  Apple Computer, Inc. July 2000

Because Mac OS X is intended to be deployed in heterogeneous networks linking
together disparate systems, it also supports multiple network file-server protocols.
Table 2-2 lists these protocols.

Some file-system capabilities extend to all writable volume formats on Mac OS X.
One of these is quotas; an administrator can specify disk quotas for all local and
remote users of a system.

Darwin and Open Source Development
Apple is the first major computer company to make open-source development a key
part of its ongoing operating-system strategy. Being Open Source technology,
Darwin is a key part of that strategy. Apple has released the source code to virtually
all of the components of Darwin to the developer community.

The Mac OS X kernel environment is a subset of Darwin. The kernel environment
contains everything in Darwin except the BSD libraries and commands that are
essential to the BSD Commands environment. For more on the kernel environment,
see the book Inside Mac OS X: Kernel Environment.

Graphics and Imaging

Mac OS X combines Quartz, QuickTime, and OpenGL—three of the most powerful
graphics technologies available—to take the graphics capabilities of the Macintosh
beyond anything seen on a desktop operating system. The 2D graphics and imaging
capabilities of Mac OS X are based on Quartz, a new Apple technology that provides

Table 2-2 Supported network file protocols

AFP client Apple File Protocol, the principle file-sharing protocol on Mac OS 8
and Mac OS 9 systems.

NFS client Network File Service, the dominant file-sharing protocol in the UNIX
world.

30 Graphics and Imaging
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

a window server and essential low-level services as well as a graphics rendering
library that uses PDF (Portable Document Format) as its internal model. Integrated
into this foundation is a new printing architecture and other graphics libraries such
as QuickDraw and QuickTime.

Quartz
Quartz is a powerful new graphics system that delivers a rich imaging model,
on-the-fly rendering, anti-aliasing, and compositing of PostScript graphics. Quartz
also implements the windowing system for Mac OS X and provides low-level
services such as event handling and cursor management. It also offers facilities for
rendering and printing that uses PDF as an internal model for graphics
representation.

Table 2-3 describes some of Quartz’s rendering capabilities and other features.

Quartz has two components, Core Graphics Services and Core Graphics Rendering.
The first of these, Core Graphics Services, is essentially the window server for the
system. The window server provides the fundamental windowing and
event-routing services for all application environments. This high-performance

Table 2-3 Quartz graphics capabilities

Bit depth A minimum bit depth of 16 bits for typical users. An 8-bit
depth in full-screen mode is available for games and other
multimedia applications.

Minimum
resolution

Supports 1024 pixels by 768 pixels as the minimum screen size
for typical users. Resolutions of 640 x 480 and 800 x 600 are
available for games and other multimedia applications.

Anti-aliasing All graphics and text are anti-aliased.

Frame buffer
access

Includes a mechanism that lets graphics applications (such as
games) gain direct access to the video frame buffer.

Velocity Engine Quartz and QuickDraw both take advantage of the Velocity
Engine to boost performance.

2D graphics
acceleration

Supports two-dimensional graphics acceleration, improving
what is currently available in QuickDraw.

C H A P T E R 2

System Technologies

Graphics and Imaging 31
Preliminary  Apple Computer, Inc. July 2000

server is lightweight in that it performs no rendering itself, yet it provides essential
services to all graphics rendering libraries that are clients of it, including Core
Graphics Rendering and QuickDraw. Core Graphics Services features such
advanced capabilities as device-independent color and pixel depth, remote display,
layered compositing, and buffered windows for the automatic repair of window
damage.

The Core Graphics Rendering component of Quartz is a graphics rendering library
for two-dimensional shapes. It is used for screen rendering, PDF generation, print
preview, and other services. Core Graphics Rendering uses PDF as an internal
model for vector graphics representation. PDF offers several advantages, including
good color management, internal compression, and font independence. Core
Graphics Rendering uses a coordinate system that is flexible and precise (because it
uses floating-point coordinates) and thus permits some degree of device
independence.

Core Graphics Rendering enables a number of important features:

� nautomatic PDF generation and save-as-PDF

� a consistent feature set for all printers

� automatic on-screen preview of graphics

� conversion of PDF data to printer raster data or PostScript

� high-quality screen rendering

See “The Graphics and Windowing Environment” (page 54) in the chapter “System
Architecture” for more information on Quartz.

QuickDraw
For Carbon developers, QuickDraw is the primary library for the construction,
manipulation, and display of two-dimensional graphical shapes, pictures, and text.

The Core Graphics Rendering library provides a QuickDraw (GrafPort)
programming interface for QuickDraw imaging instructions. This interface gives
QuickDraw code access to the PDF-generation, PostScript-generation, and other
graphics and imaging capabilities of Quartz.

32 Graphics and Imaging
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

OpenGL
Mac OS X includes Apple’s highly optimized implementation of OpenGL as the
system API and library for 3D graphics. OpenGL is an industry-wide standard for
developing portable 3D graphics applications. OpenGL is one of the most widely
adopted graphics API standards today, which makes code written to OpenGL
highly portable and the generated visual effects highly consistent. It is specifically
designed for games, animation, CAD/CAM, medical imaging, and other
applications that need a rich, robust framework for visualizing shapes in two and
three dimensions. Mac OS X’s version of OpenGL produces consistently
high-quality graphical images at a consistently high level of performance.

OpenGL offers a broad and powerful set of imaging functions, including texture
mapping, hidden surface removal, alpha blending (transparency), anti-aliasing,
pixel operations, viewing and modeling transformations, atmospheric effects (fog,
smoke, and haze), and other special effects. Each OpenGL command directs a
drawing action or causes special effects, and developers can create lists of these
commands for repetitive effects. Although OpenGL is largely independent of the
windowing characteristics of each operating system, special “glue” routines are
implemented to enable OpenGL to work in an operating system’s windowing
environment.

QuickTime
Mac OS X comes packaged with QuickTime 4. QuickTime is a powerful multimedia
technology for manipulating, enhancing, and storing video, sound, animation,
graphics, text, music, and even 360-degree virtual reality. It also allows you to
stream digital video where the data stream can be either live or stored. QuickTime
is cross-platform technology; besides Mac OS X, it is available on Mac OS 8, Mac OS
9, Windows 95, Windows 98, Windows NT, and Windows 2000.

QuickTime supports every major file format for images, including PICT, BMP, GIF,
JPEG, and PNG. It also supports every significant professional file format for video,
including AVI, AVR, DV, M-JPEG, MPEG-1, and OpenDML. For Web streaming, it
includes support for HTTP as well as RTP and RTSP.

QuickTime streaming allows users to view live and video-on-demand movies using
the industry-standard protocols RTP (Real-Time Transport Protocol) and RTSP
(Real-Time Streaming Protocol). Users can view streaming live broadcasts,
previously recorded movies, or a mixture of both. Broadcasts can be either unicast
(one-to-one) or multicast (one-to-many).

C H A P T E R 2

System Technologies

Graphics and Imaging 33
Preliminary  Apple Computer, Inc. July 2000

Through the QuickTime plug-in, QuickTime’s digital video streaming capability is
extended to all popular Web browsers, including Internet Explorer, Netscape
Navigator, and America Online browsers. The plug-in supports over thirty
different media types and makes it possible to view over 80 percent of all Internet
media. The Web streaming capabilities of QuickTime has a Fast Start feature, which
presents the first frame of a movie almost immediately and automatically begins
playing a movie as it is downloaded. It also features other advanced capabilities,
such movie “hot spots” and automatic Web-page launching.

Printing
The printing system for Mac OS X is based on a completely new architecture. It is a
service available for all application environments. Drawing upon the capabilities of
Quartz, the printing system delivers a consistent human interface and makes
possible shorter development cycles for printer vendors. It allows applications to
draw in “virtual pages” and map those pages to physical pages at print time,
breaking the connection between the drawing page and the printing page. The
printing system also provides applications with a high degree of control over the
user-interface elements in print dialogs. Table 2-4 describes some other features.

Table 2-4 Features of the Mac OS X printing system

Print Center Provides a single interface for finding printers, submitting
jobs, and managing queues.

Native PDF Supports PDF as a native data type. Any application (except
for Classic applications) can easily save textual and graphical
data to device-independent PDF where appropriate. The
printing system provides this capability from a standard
print set-up dialog box.

PostScript printing Prints to PostScript Level 1, 2, and 3 compatible printers
(except in Classic environment).

Raster printers Prints to raster printers in all environments, except in
Classic.

Print preview Provides a print preview capability in all environments
except in Classic. The printing system implements this
feature by launching a PDF viewing application.

Print spooling Enables speedy spooling of print jobs.

34 Networking and the Internet
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

Apple Type Solution
The Apple Type Solution (ATS) is the engine for the system-wide management,
layout, and rendering of fonts. With ATS, users can have a single set of fonts
distributed over different parts of the file system or even over a network. ATS
makes the same set of fonts available to all clients. The centralization of font
rendering and layout contributes to overall system performance by consolidating
expensive operations such as synthesizing font data and rendering glyphs. ATS
provides support for a wide variety of font formats including TrueType, Type 1,
OpenType, and legacy bitmap fonts.

Networking and the Internet

Mac OS X is one of the premier platforms for computing in an interconnected world.
It supports the dominant media types, protocols, and services in the industry as
well as differentiated and innovative services from Apple.

Mac OS X’s network protocol stack is based on BSD. The extensible architecture
provided by Network Kernel Extensions, summarized in “Networking Extensions”
(page 27), facilitates the creation of modules implementing new or existing
protocols that can be added to this stack.

C H A P T E R 2

System Technologies

Networking and the Internet 35
Preliminary  Apple Computer, Inc. July 2000

Media Types
Mac OS X supports the network media types listed in Table 2-5,

Standard Protocols
Mac OS X supports a number of protocols that are standard in the computing
industry. Table 2-6 summarizes these protocols.

Table 2-5 Network media types

Ethernet —
10/100Base-T

For the Ethernet ports built into every new Macintosh.

Ethernet —
1000Base-T

Also known as Gigabit Ethernet. For data transmission over
fiber-optic cable and standardized copper wiring.

Jumbo Frame This Ethernet format is a technology that uses 9 KB frames for
interserver links rather than the standard 1.5 KB frame. Jumbo
Frame decreases network overhead and increases the flow of
server-to-server and server-to-application data.

Serial Supports modem, DSL, and ISDN capabilities.

Wireless See “Airport” (page 39).

Table 2-6 Network protocols

TCP/IP and
UDP/IP

Mac OS X provides two transmission-layer protocols, TCP
(Transmission Control Protocol) and UDP (User Datagram
Protocol) to work with the network-layer Internet Protocol
(IP).

PPP For dialup (modem) access, Mac OS X includes PPP
(Point-to-Point Protocol). PPP support includes TCP/IP as
well as the PAP and CHAP authentication protocols.

PAP The Printer Access Protocol is used for spooling print jobs
and printing to network printers.

36 Networking and the Internet
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

Apple also implements a number of file-sharing protocols; see Table 2-2 (page 29)
for a summary of these protocols.

HTTP The Hypertext Transport Protocol is the standard protocol
for transferring Web pages between a Web server and
browser.

FTP The File Transfer Protocol (part of BSD) is a standard
means of moving files between computers on TCP/IP
networks.

DNS Domain Name Services is the standard Internet service for
mapping host names to IP addresses.

SLP Service Location Protocol is a protocol designed for the
automatic discovery of resources (printers, servers, fax
machines, and so on) on an IP network.

DHCP and BOOTP The Dynamic Host Configuration Protocol and the
Bootstrap Protocol automate the assignment of IP
addresses in a particular network.

LDAP The Lightweight Directory Access Protocol lets users
locate organizations, individuals, and resources such as
files and devices in a network, whether on the Internet or
on a corporate intranet.

NTP The Network Time Protocol is used for synchronizing
client clocks.

Table 2-6 Network protocols (continued)

C H A P T E R 2

System Technologies

Networking and the Internet 37
Preliminary  Apple Computer, Inc. July 2000

Legacy Network Services and Protocols
Apple is including a number of its legacy network products in Mac OS X. This will
ease the transition to the new operating system for Mac OS users who currently
depend on these products.

� AppleTalk is a suite of network protocols that is standard on Macintosh and can
be integrated with other network systems, such as the Internet. The protocols
include ATP/ASP (Apple Transaction Protocol/Apple Session Protocol) and
ADSP, a transmission layer protocol. Mac OS X includes minimal support for
compatibility with legacy AppleTalk environments and solutions.

� Open Transport implements industry-standard communications and
networking protocols as part of the I/O system. It helps developers to
incorporate networking services in their applications without having to worry
about communication details specific to any one network.

Routing and Multihoming
Mac OS X is a powerful and easy-to-use desktop operating system but will also
serve as the basis for powerful server solutions. Some businesses or organizations
have small networks that could benefit from the services of a router and want to
leverage their general purpose server. Mac OS X offers IP routing support for just
these occasions. With IP routing, a Mac OS X machine can act as a router or even as
a gateway to the Internet. The Routing Information Protocol (RIP) is used in the
implementation of this feature.

Mac OS X also allows multihoming and IP aliasing. With multihoming, a computer
host is physically connected to multiple data links that can be on the same or
different networks. IP aliasing allows a network administrator to assign multiple IP
addresses to a single network interface. Thus one computer running Mac OS X can
serve multiple websites by acting as if it were multiple servers.

Personal File and Web Services
Personal Web Sharing, which is also a feature of Mac OS 8 and Mac OS 9, allows
users to share information with other users on an intranet, no matter what type of
computer or browser they are using. Basically, it lets users set up their own intranet

38 Advanced Hardware Features
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

site. Apache, the most popular web server on the Internet, is integrated as the
system’s HTTP service. The host computer on which the Personal Web Sharing
server is running must be connected to a TCP/IP network.

Advanced Hardware Features

Right out of the box, Mac OS X supplies drivers for most standards-based hard
drives and add-on devices in common use today. For example, it provides support
and drivers for IDE and SCSI disk drives and supports a wide range of Apple
monitors. Mac OS X also includes features such as power management for both
desktop and portable systems.

The rest of this section discusses some of the advanced hardware features of Mac
OS X. For hardware-related information in this book, see “Media Types” (page 35),
“File Systems” (page 27), and “Networking Extensions” (page 27). For detailed
information on hardware support, see the installation guide that comes with Mac
OS X.

USB
USB (Universal Serial Bus) is a high-speed plug-and-play interface between a
computer and add-on devices such as audio players, joysticks, keyboards,
telephones, scanners, and printers. It supports a data speed of 12 megabits per
second. USB permits users to add a new device to their computer without having to
add an adapter card or even having to turn the computer off. Mac OS X includes
USB drivers for the following classes of devices:

� ninput devices (HID class)

� printers

� modems and other communication devices

� mass storage (Zip and Jaz drives, for instance, and external hard drives)

� imaging

C H A P T E R 2

System Technologies

Advanced Hardware Features 39
Preliminary  Apple Computer, Inc. July 2000

� display

� audio

FireWire
FireWire is Apple’s implementation of the new IEEE 1394 standard (High
Performance Serial Bus) for peripheral devices. It enables a single plug-and-socket
serial connection on which up to 63 devices can be attached. Because it supports a
data transfer rate up to 400 megabits per second, FireWire is ideal for devices such
as digital cameras, digital video disks (DVDs), digital video tapes, digital
camcorders, and music synthesizers. With FireWire users can chain devices
together in different ways without the need for terminators or complicated set-up
requirements. And devices can be plugged in and used without the need for a
system restart. Because IEEE 1394 is a peer-to-peer interface, you can connect one
FireWire-capable device to another and use both without connecting either to a
computer; for example, one camcorder can dub to another.

Velocity Engine
Support for the Velocity Engine is another important feature of Mac OS X. The
Velocity Engine boosts the performance of any application exploiting data
parallelism, such as those performing 3D graphic imaging, image processing, video
processing, audio compression, and software-based cell telephony. Quartz,
QuickTime, and QuickDraw now incorporate Velocity Engine capabilities; thus any
application using these APIs can tap into the Velocity Engine without making any
changes. The Mac OS X SDK includes a C/C++ compiler with Velocity Engine
support so you can also create new applications that take full advantage of the
Velocity Engine.

Airport
Airport is Apple's wireless network technology that delivers fast and reliable
communications between multiple computers in a local area network and between
that network and the Internet. With AirPort, several users can be online at the same
time—simultaneously surfing the Web, accessing e-mail, competing in games, and
swapping files—all through a single Internet service account. Airport also lets you
wirelessly transfer files from your computer to another AirPort-equipped iBook,
iMac, PowerBook or Power Mac G4 from up to 150 feet away.

40 Advanced Hardware Features
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 2

System Technologies

The wireless data rate for Airport is 11 megabits per second for up to 10
simultaneous users per base station. Because it is based on the IEEE 802.11 Direct
Sequence Spread Spectrum (DSSS) worldwide industry standard, AirPort permits
interoperability with other 802.11-based equipment. And because AirPort uses
radio signals, it can communicate through solid objects.

41
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

3 System Architecture

A key consideration in the design of Mac OS X was the need to integrate a diverse
collection of technologies—some with greatly different histories—and base this
unified set of technologies on an advanced kernel environment. This chapter
explores the general outlines of the architecture that made this possible.

The central characteristic of the Mac OS X architecture is the layering of system
software, with one layer having dependencies on, and interfaces with, the layer
beneath it (see Figure 3-1 (page 43)). Mac OS X has four distinct layers of system
software (in order of dependency):

� Application environments. Encompasses the five application (or execution)
environments: Carbon, Cocoa, Java, Classic, and BSD Commands. For
developers, the first three of these environments are the most significant.
Mac OS X includes development tools and runtimes for these environments.

See “Application Environments” (page 47) for more information.

� Application Services. Incorporates the system services available to all
application environments that have some impact on the graphical user interface.
It includes Quartz, QuickDraw, and OpenGL as well as essential system
managers.

See “The Graphics and Windowing Environment” (page 54) and “Other
Application Services” (page 64) for more information.

42 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

� Core Services. Incorporates those system services that have no effect on the
graphical user interface. It includes Core Foundation, Open Transport, and
certain core portions of Carbon.

See “Core Services” (page 65) for more information.

� Kernel environment. Provides the foundation layer of Mac OS X. Its primary
components are Mach and BSD, but it also includes networking protocol stacks
and services, file systems, and device drivers. The kernel environment offers
facilities for developing device drivers (the I/O Kit) and loadable kernel
extensions, including Network Kernel Extensions (NKEs).

For further information, see the section “A Layered Perspective” (page 42) and
the book Inside Mac OS X: Kernel Environment.

The Core Services and Application Services layers and the Carbon and Cocoa
application environments are packaged in umbrella frameworks (described in the
chapter “Umbrella Frameworks” (page 117)). Many public APIs of the kernel
environment are exported through the System framework.

The first part of this chapter, as summarized in the foregoing paragraphs, presents
the architecture of Mac OS X as layers of system software. Following this static
perspective of Mac OS X is a more dynamic view that traces the progress of a user
event through the system. A typical event in Mac OS X originates when the user
manipulates an input device such as a mouse or a keyboard. The device driver
associated with that device, through the I/O Kit, creates a low-level event, puts it in
the window server’s event queue, and notifies the window server. The window
server dispatches the event to the appropriate run-loop port of the target process.
There the event is picked up by the Carbon Event Manager and forwarded to the
event-handling mechanism appropriate to the application environment. Events can
also be asynchronous, such as a network packet containing configuration changes.

A Layered Perspective

A common way to look at complex software is to separate out parts of that software
into “layers.” Visually depicted, one layer sits on top of another, with the most
fundamental layer on the bottom. This kind of diagram suggests the general
interfaces and dependencies between the layers of software. The higher layers of

C H A P T E R 3

System Architecture

A Layered Perspective 43
Preliminary  Apple Computer, Inc. July 2000

software, which are the closest to actual application code, depend on the layer
immediately under them, and that intermediate layer depends on an even lower
layer.

Mac OS X is reducible to such a perspective. Figure 3-1 illustrates the general
structure of Mac OS X system software as interdependent layers of libraries,
frameworks, and services.

Figure 3-1 Mac OS X as layers of system software

Although this diagram does help clarify the overall architecture, there are dangers
in the necessarily over-simplified view it presents. The Mac OS X services and
subsystems that one application uses—and how it uses them—can be very different
from those used by another application, even one of a similar type. Dependencies
and interfaces at the different levels can vary from program to program depending
on individual requirements and realities.

With that caveat aside, let’s take a guided tour through the layers depicted in this
diagram.

BSDCocoa Carbon Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment

44 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

The boxes in the top row of the diagram of Figure 3-1 (page 43) represent the
different application (or execution) environments of Mac OS X. There are five such
environments. The first two are the Classic and the BSD Commands environments.

� The Classic “compatibility” environment is where users can run their
non-Carbon Mac OS 8 or Mac OS 9 applications. Instead of sitting on top of the
Application Services, the Classic environment in this diagram has lines
connecting it to each layer. These connections indicate that the Classic
environment is “hard-wired” into Mac OS X; it is not an environment that
developers can specifically compile code for on Mac OS X. In other words, there
are no public non-Carbon Mac OS 8 or Mac OS 9 APIs on a Mac OS X system that
can be compiled.

� The BSD Commands environment provides a shell in which you can execute
BSD programs on the command line. The standard BSD tools, utilities, and
scripts are available for this environment as well as any custom ones you or third
parties create. The diagram shows the BSD Commands environment connected
directly with the kernel-environment layer. Note that you can run programs on
the command line that are built in non-BSD environments, such as programs
based on Cocoa’s Foundation framework.

The kernel environment exports BSD services to the upper layers of the system
through the System framework. BSD commands are also available to
developers; however, BSD commands might not be included in certain
Mac OS X installations. Because the BSD Commands environment is a special
optional environment, it is not described further in this document.

Next are the three principal application environments for Mac OS X developers:

� Carbon is an adaptation of the Mac OS 9 APIs and libraries for Mac OS X. It
carries over most of the prior APIs (70 percent of the functions) and includes
some APIs and services specifically developed for Mac OS X. See “Carbon”
(page 48) for a discussion of Carbon.

� Cocoa is a collection of advanced object-oriented APIs for developing
applications written in Java and Objective-C. See “Cocoa” (page 50) for more
information on Cocoa.

� The Java environment is for the development and deployment of 100% Pure Java
and mixed-API Java applications and applets. See “Java” (page 51) for an
overview of this application environment.

C H A P T E R 3

System Architecture

A Layered Perspective 45
Preliminary  Apple Computer, Inc. July 2000

Directly supporting the Carbon, Cocoa, and Java environments are the layers of
system software that offer services for all application environments. These layers
are stacked in decreasing widths to suggest that application code can access lower
layers directly—that is, without the mediation of intervening layers. (However, see
the warning about linking outside of umbrella frameworks in “Restrictions on
Subframework Linking” (page 124) in the chapter “Umbrella Frameworks.”)

The first of these layers is the Application Services layer. It contains the graphics
and windowing environment of Mac OS X, principally implemented by Quartz and
QuickDraw. This environment is responsible for screen rendering, printing, event
handling, and low-level window and cursor management. It also holds libraries,
frameworks, and background servers useful in the implementation of graphical
user interfaces. See “The Graphics and Windowing Environment” (page 54) and
“Other Application Services” (page 64) for details.

QuickTime is an extension to the operating system that architecturally spans layers
of system software. It is an interactive multimedia environment that has features
and functionality common to both a graphics environment and an application
environment. Figure 3-1 (page 43) presents QuickTime as straddling the line
between Application Services and the application environments. QuickTime
requires a host application environment (or a browser) in which to execute, but the
multimedia components that it offers have unique and sophisticated capabilities
typically found only in application environments.

The Application Services layer sits on top of Core Services. In the Core Services
layer are the common services that are not directly a part of a graphical user
interface. Here you find cross-environment implementations of basic programmatic
abstractions such as strings, run loops, and collections. There are also APIs in Core
Services for managing processes, threads, resources, and virtual memory, and for
interacting with the file system. “Core Services” (page 65) discusses this layer of
system software.

The kernel environment is the lowest stratum of system software, just below the
Core Services layer. The kernel environment provides essential operating-system
functionality to the layers above it, such as

� preemptive multitasking

� advanced virtual memory with memory protection and dynamic memory
allocation

� symmetric multiprocessing

46 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

� multi-user access

� Virtual File System–based file systems

� device drivers

� networking

� basic threading packages

It is a high-performance and highly modular kernel with support for dynamic
loading of device drivers, networking extensions, and file systems.

The kernel environment consists of five major components:

� Mach. Provides the fundamental abstractions and implementations of tasks,
threads, ports, virtual addressing, memory management, and intertask
communication. Mach is also the part of the operating system that manages
processor usage, handles scheduling, and enforces memory protection. In
addition it provides timing services, synchronization primitives, and a
messaging-centered infrastructure to the rest of the operating system.

� BSD. A version of 4.4BSD that is used to support preemptive multitasking,
memory protection, dynamic memory allocation, and symmetric
multiprocessing. BSD forms the basis for networking and file systems in
Mac OS X. Some of the other facilities it provides or supports are process
creation and management, signals, system bootstrap and shutdown, generic
I/O operations, basic file operations, and handling of terminals and other
devices. It also implements user and group IDs as well as the related features of
resource limits and access policies for files and other resources. BSD provides
many of the POSIX APIs.

� Device drivers and the I/O Kit. Device drivers in Mac OS X are created with the
I/O Kit, a framework that offers an object-oriented programming model (based
on Embedded C++) to streamline the development of device drivers. The I/O
Kit takes into account underlying operating-system features such as virtual
memory, memory protection, and preemption and thus relieves device-driver
writers from having to worry about them in their code. It is designed to be
modular, reusable, and extensible. The kernel environment includes a number
of ready-made device drivers (see the chapter “System Technologies”
(page 15)).

C H A P T E R 3

System Architecture

A Layered Perspective 47
Preliminary  Apple Computer, Inc. July 2000

� Networking. The kernel environment implements numerous native networking
protocols and facilities, which are described in “Networking and the Internet”
(page 34) in the chapter “System Technologies.” Some of the networking
facilities and protocol stacks of Mac OS X are implemented as Network Kernel
Extensions (NKEs). They can extend the networking infrastructure of the kernel
dynamically—that is, without recompiling and relinking the kernel.

� File systems. The kernel environment supports many different file systems and
volume formats, including Mac OS Extended (HFS+), Mac OS Standard (HFS),
UFS, NFS, and ISO 9660 for CD-ROMs. Mac OS Extended is the default file
system, and Mac OS X typically boots and “roots” from it. By using the Virtual
File System (VFS) infrastructure, developers can write kernel extensions that
add support for other file systems and extend file system functionality—adding
file-level compression, for instance. VFS is a set of standard internal file-system
interfaces and utilities for building such extensions. For summaries of the
supported formats, see “File Systems” (page 27) in the chapter “System
Technologies.”

As described in “Darwin and Open Source Development” (page 29) of the chapter
“System Technologies,” the kernel environment is a subset of Darwin, Apple’s
Open Source technology. Darwin combines the Mac OS X kernel environment and
the BSD commands and libraries essential to the BSD Commands environment. For
more on the Mac OS X kernel environment and its relation to the Darwin, see the
book Inside Mac OS X: Kernel Environment.

The kernel environment, Core Services, and Application Services layers of
Mac OS X are packaged as umbrella frameworks. The major Mac OS X application
environments, Carbon and Cocoa, are also packaged as umbrella frameworks.
See the chapter “Umbrella Frameworks” (page 117) for more about this subject.

Application Environments
An application environment consists of the frameworks, libraries, and services
(along with associated APIs) necessary for the runtime execution of programs
developed with those APIs. The application environments have dependencies on all
underlying layers of system software.

Mac OS X currently has five application environments: Classic, BSD Commands,
Carbon, Cocoa, and Java. This section provides overviews of Carbon, Cocoa, and
Java.

48 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

Carbon

Carbon is a set of programming interfaces derived from earlier Mac OS APIs that
have been modified to work with Mac OS X, especially its kernel environment.
Carbon carries forward most of the existing Mac OS managers and APIs;
specifically, this entails about 70 percent of the total functions and 95 percent of
functions used by typical applications.

The Carbon APIs are too large and complex to summarize adequately here.
However, some of the major differences between Carbon and its Mac OS
predecessors are worth noting.

Memory. In adaptation to the kernel environment’s features of advanced virtual
memory and memory protection, many APIs—particularly the Memory Manager—
have undergone changes that restrict or eliminate the use of zones, system memory,
or temporary memory. For example, temporary memory allocations in Mac OS X
are allocated in the application’s address space. Although there are no longer
functions for accessing the system heap, new routines are provided for the
allocation of shared and persistent memory. In addition, the virtual memory system
in Mac OS X introduces a number of changes in the addressing model.

Hardware Interfaces. The Mac OS 9 managers used for low-level access to
hardware—for example, the ADB Manager, the Device Manager, and the Ethernet
Driver—are not implemented in Mac OS X. The different device-driver architecture
provided by the I/O Kit mediates all low-level access to hardware devices.

Resources. Because there is no Mac OS ROM in Mac OS X, functions related to
accessing resources in ROM are unsupported in Carbon. Also the Resource
Manager places greater restrictions on accessing the resource map.

New Managers. Apple has developed new Carbon versions of the Printing
Manager and the Event Manager for Mac OS X. The old Printing Manager is not
supported and developers must use the Carbon Printing Manager. The old Event
Manager is still supported; however, developers are strongly encouraged to adopt
the Carbon Event Manager.

C H A P T E R 3

System Architecture

A Layered Perspective 49
Preliminary  Apple Computer, Inc. July 2000

Replacement Managers. Different Carbon technologies now take the place of
earlier libraries.

Developers must use these replacements.

General Changes. Many functions in the various managers have been changed or
removed throughout Carbon. (See the “Carbon Specification” for complete details.)

� Data structures. To ensure the integrity of system data and to support access to
all system services through preemptive threads, Carbon restricts direct access to
data structures. Instead of functions that return pointers or handles to structures
that can be dereferenced, Carbon now supplies accessor functions for getting
and setting field data. In addition, it includes functions for creating and
disposing of data structures.

� Definition procedures. The Window Manager, Menu Manager, Control
Manager, and List Manager in Carbon still permit you to create and use
standard and custom definition procedures (WDEFs, MDEFs, CDEFs, and
LDEFs), but you must be sure to compile them as PowerPC code. Additionally,
these managers provide new routines for creating and packaging them.

� 68K code. Mac OS X does not support 68K code (except in the Classic
environment). For this reason the Trap Manager (and the trap table), the Mixed
Mode Manager, and the Patch Manager are unavailable or greatly reduced in
scope in Carbon. For the same reason, many other functions have been dropped
from Carbon.

Table 3-1 Carbon Managers

Instead Of Now Use

AppleTalk Manager Open Transport

PPC Toolbox Apple events

Standard File Package Navigation Services

QuickDraw 3D OpenGL

Help Manager Help Viewer

50 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

Many of the commonly used parts of Mac OS X are Carbon managers or are
programs based on Carbon APIs. For example, the system processes that handle
events and manage application processes in Mac OS X are Carbon managers, many
of the managers in the Core Services layer are Carbon-based (see “Core Services”
(page 65)), and the Finder is a Carbon application.

For more information on Carbon, consult the Carbon documentation website at
http://developer.apple.com/techpubs/carbon/carbon.html. In particular, see the
documents CarbonLib Porting Guide, which contains specific information about
converting code to the Mac OS X application model, and the Carbon Specification,
which gives details on which managers and functions are supported in Carbon.

Cocoa

The Cocoa application environment is based on two object-oriented frameworks:
Foundation (Foundation.framework) and the Application Kit (AppKit.framework).
These frameworks offer both Java and Objective-C APIs (with most Java classes
simply “bridging” to their Objective-C implementation).

Foundation and the Application Kit are similar in some respects to the Core Services
and Application Services layers, respectively. The classes in the Foundation
framework provide objects and functionality that have no impact on the user
interface; Foundation is directly based on Core Foundation. The classes of the
Application Kit furnish all the objects and behavior that affect what users see in the
user interface, such as windows and buttons, and responsiveness to their mouse
clicks and key presses. The Application Kit directly depends on Foundation.

The Foundation framework’s classes fall into several categories:

� object wrappers (or “helpers”) for basic programmatic types and operations,
including strings, arrays, dictionaries, numbers, byte swapping, parsing, and
exception handling

� object wrappers for kernel-environment entities and services, such as tasks,
ports, run loops, timers, threads and locks

� object-related functionality, particularly memory management (autorelease
pools), remote invocations, archiving, and serialization

C H A P T E R 3

System Architecture

A Layered Perspective 51
Preliminary  Apple Computer, Inc. July 2000

� file-system and I/O functionality including URL handling, file seeking, and
dynamic loading of code and localized resources

� other services, such as distributed notifications, undo (and redo), data
formatting, and dates and times

Many of the Application Kit’s classes, as might be expected, are designed for the
creation and management of objects that appear in a graphical user interface.
Among these are classes for windows, dialog boxes, buttons, tables, text fields,
sliders, pop-up lists, scroll views, menus, and even a movie view for QuickTime
streaming.

However, the Application Kit has features and functionality that make it far more
useful than just a collection of classes for user-interface objects.

� It has sophisticated mechanisms for event handling and application and
document management.

� It gives applications ways to integrate and manage colors, fonts, and printing
(even providing the dialog boxes for these features).

� It allows you to composite images in many different graphical formats and it
offers a framework for drawing, including the application of vector
transformations.

� It includes facilities for spell checking, dragging, and copy-and-paste
operations.

Other Cocoa frameworks are also available for scripting, network management, and
other purposes.

The Cocoa umbrella framework (Cocoa.framework) imports both Foundation and
the Application Kit. If you are writing an application, link with the Cocoa
framework. If you are writing any Cocoa program that does not have a graphical
user interface (a background server, for example), you should link at least with the
Foundation framework.

Java

The Java application environment allows you to develop and execute Java
programs on Mac OS X, including 100% Pure Java applications and applets. This
environment is implemented in conformance with an industry standard—that is, a
recent version of the Java Development Kit (JDK) including the Java virtual
machine (VM). Because of this, a Java application created with this environment is

52 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

very portable. You can copy it to a machine that has entirely different hardware and
a different operating system and, as long as that system includes a compatible
version of the Java VM, your application should run on it. A Java applet should run
in any Internet browser with the proper capabilities.

The Java application environment on Mac OS X has three major components:

� A development environment, including the Java compiler (javac) and debugger
(jdb) as well as other tools, including javap, javadoc, and appletviewer.

This “command-line” environment requires a BSD shell, such as that provided
by Apple’s Terminal application. Apple supplies the Project Builder application
as a front end to this environment and third parties may supply their own front
ends. The command-line tools are located in the JavaVM.framework/Commands
subdirectory, with symbolic links supplied to this directory in /usr/bin.

� A runtime environment consisting of Sun’s high-performance Hotspot Java
virtual machine, the “just-in-time” (JIT) bytecode compiler, and the basic Java
packages.

The Java virtual machine is located at /System/Library/Frameworks/
JavaVM.framework/Libraries. The basic packages include java.lang, java.util,
java.io, and java.net; they are in the classes.jar archive in the Classes folder
of the same framework.

� An application framework containing the classes necessary for building a Java
application.

The more significant of these packages are java.awt and javax.swing, commonly
known as AWT (Abstract Windowing Toolkit) and Swing. The AWT package
implements standard user-interface components (such as buttons and text
fields), basic drawing capabilities, a layout manager, and the event-handling
mechanism. The Swing package provides a greatly extended set of user interface

Note: The Cocoa application environment includes Java packages corresponding
to the Application Kit and Foundation frameworks. These packages allow you to
develop a Cocoa application using Java as the development language. You can
mix (within reason) the APIs from these packages and native Java APIs
(excluding AWT or Swing APIs). For more on the Cocoa application environment,
see “Cocoa” (page 50). In addition, Apple’s JDirect and Sun’s JNI (Java Native
Interface) programming interfaces allow your Java programs to call other
frameworks, including Carbon. And you can write multimedia Java applications
for the Mac OS and Windows platforms using QuickTime for Java.

C H A P T E R 3

System Architecture

A Layered Perspective 53
Preliminary  Apple Computer, Inc. July 2000

components. These components automatically take on the look and feel of the
host platform. Swing includes versions of the existing AWT component set plus
a rich set of higher-level components, such as tree view, list box, and tabbed
panes.The AWT and Swing package are in a jar archive located at
JavaVM.framework/Classes/classes.jar.

The architecture of the Java application environment is much different, and more
complex, than the simplified picture in Figure 3-1 (page 43) indicates. Figure 3-2
presents a more realistic view of the Java environment.

Figure 3-2 Architecture of the Java environment

The Java virtual machine along with the basic Java packages—java.lang, java.util,
and java.io—are equivalent to the Core Services layer of system software for the
Carbon and Cocoa environments. They draw on the resources of the kernel
environment to implement low-level services such as process management,
threading, and input/output. They do not need to access anything in the Core
Services layer of system software (Open Transport, Core Foundation, and so on).

All other parts of Java on Mac OS X are layered on top of the VM and the basic
packages. If a Java program does not have a user interface (say, a tool or an
application server), all it needs is this foundation to execute. But a 100% Pure Java

Java
command

environment

Swing

AWT

Carbon

Application Services

Basic JDK packages
(java.lang, java.util, java.io, java.net)

Java virtual machine (VM)

Kernel environment

54 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

application or applet (which, by definition, has a graphical user interface) must use
AWT or Swing, both of which bind with many of the frameworks and libraries in
the Application Services layer of system software. Swing itself is layered on a
primitive part of the AWT package. AWT and Swing together are architecturally
equivalent to a GUI-oriented toolbox or framework such as the Human Interface
Toolbox or the Application Kit.

The Graphics and Windowing Environment
The preeminent application services of Mac OS X are those that make up the
graphics and windowing environment. An application, by its very nature, must
display its windows in a graphical user interface and allow users to manipulate its
controls. A graphics and windowing environment confers these basic capabilities
on applications “for free,” relieving them of the burden of implementing them on
their own. In addition to rendering text and images in windows on a screen (as well
as printing them), this environment also provides essential low-level facilities such
as initial event routing and cursor management.

The core portion of the Mac OS X graphics and windowing environment is called
Quartz. As depicted in Figure 3-3, Quartz has two parts, Core Graphics Services and
Core Graphics Rendering.

Figure 3-3 Mac OS X graphics and windowing environment

Core Graphics Services
(window server)

Core Graphics
Rendering

(2D)

QuickDraw
(2D)

OpenGL
(3D)

QuickTime
(streaming,
 multimedia)

Graphics Rendering Libraries

C H A P T E R 3

System Architecture

A Layered Perspective 55
Preliminary  Apple Computer, Inc. July 2000

The Core Graphics Rendering part of Quartz is one of several graphics libraries that
provide graphics-rendering services. It is designed for the display of
two-dimensional text and graphics. Peer graphics and multimedia libraries include

� QuickDraw for rendering two-dimensional images

� OpenGL for rendering both two- and three-dimensional images

� QuickTime for rendering streaming digital video and other multimedia

QuickTime is an interactive multimedia environment that includes capabilities
and features found in both a graphics environment and an application
environment. Despite its hybrid status in the Mac OS X architecture, this section,
as a simplification, treats it as a peer graphics library to Core Graphics
Rendering, QuickDraw, and OpenGL.

All of the rendering libraries have direct dependencies on the other part of Quartz,
the Core Graphics Services layer. However, QuickTime and OpenGL have fewer
dependencies because they implement their own versions of certain windowing
capabilities.

Core Graphics Services consists of the Mac OS X window server and the (currently
private) system programming interfaces (SPIs) it depends on. The window server
has overall responsibility for displays and windows, including their composition,
positioning, and basic management. It also performs low-level cursor management
and event routing.

Quartz is largely implemented in the Core Graphics framework
(CoreGraphics.framework). The dynamic shared library of this framework, as
illustrated by Figure 3-4, includes both client APIs and server SPIs. Applications or
application environments link with the client side of the library—Core Graphics
Rendering—for screen rendering, PDF generation, and other services. The major
client of the server SPIs of the Core Graphics framework is the window server itself.

The remainder of this section discusses the role of Quartz in the graphics and
windowing environment. For conceptual information on QuickDraw, QuickTime,
and OpenGL, consult the relevant Apple developer documentation
(developer.apple.com).

56 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

Figure 3-4 The Core Graphics framework

Core Graphics Services

The Core Graphics Services layer of Mac OS X comprises the window server and the
(private) system programming interfaces (SPI) on which the window server
depends. In this layer are the facilities responsible for rudimentary screen displays,
window compositing and management, event routing, and cursor management.

The window server is a single system-wide process that coordinates low-level
windowing behavior and enforces a fundamental uniformity in what appears on
the screen. It is a lightweight server in that it does not do any rendering itself, but
instead communicates with the client graphics libraries layered on top of it. It is
“agnostic” in terms of a drawing model.

The window server has few dependencies on other system services and libraries. It
relies on the kernel environment’s I/O Kit (specifically, device drivers built with the
I/O Kit) in order to communicate with the frame buffer, the input infrastructure,
and input and output devices. It also links with certain frameworks in Core Services
to acquire process-management services such as basic process activation.

One of the primary duties of the window server is window compositing. It
composites and recomposites each pixel of an application’s window as the window
is drawn, redrawn, covered, and uncovered. Each window is represented as a
bitmap that includes both translucency (alpha channel) and anti-aliasing
information. The bitmap is buffered, allowing the window server to “remember” an
application’s window contents and to recomposite it without the application’s
involvement. However, Quartz does not retain vector information that a graphics
library (such as its own Core Graphics Rendering) might have used to create a
window or any other image.

Core Graphics
framework

ClientAPI
(rendering) Server SPI

Applications and
Application environments

Window
server

C H A P T E R 3

System Architecture

A Layered Perspective 57
Preliminary  Apple Computer, Inc. July 2000

In its Core Graphics Services component, Quartz models the windowing system as
a layered compositing engine. Traditional windowing systems use a “switch” model
in which every pixel on a screen belongs entirely to one window (or the desktop).
Because of this model, transitions are necessarily abrupt; when you close a window,
for example, it disappears immediately. A layered compositing window system, on
the other hand, is based on a “video mixer” model in which every pixel on the
screen—particularly in the attributes of translucency and anti-aliasing—can be
shared among windows in real time. This model allows for smooth transitions
between the states of a graphical user interface, one of the distinctive characteristics
of the Aqua experience.

For the role of the window server in event handling, see “Tracking a User Event”
(page 71).

Core Graphics Rendering

The Core Graphics Rendering part of Quartz is a graphics library with a vector
flavor. Its APIs allow you to create text and images by specifying a sequence of
commands and mathematical statements that place lines, shapes, color, shading,
translucency, and other graphical attributes in two-dimensional space. You do not
need to specify the attributes of individual pixels. As a result, a shape can be
efficiently defined as a series of paths and attributes rather than as a bitmap.

By using vectors, Core Graphics Rendering can also use a coordinate system for
drawing based on, say, inches or centimeters rather than a pixel grid. The
coordinate system is flexible, permitting various measurement standards, and it
enables some degree of display independence since it is not bound to any screen
resolution. It also uses floating-point coordinates. Prior to compositing by Core
Graphics Services, Core Graphics Rendering translates the vector information of an
image, which is described in terms of the coordinate system, to pixel values.

The internal model that Core Graphics Rendering uses for vector graphics
representation is Portable Document Format (PDF). As a superset of Adobe
PostScript, PDF brings several improvements, including better color management,
internal compression, font independence, and interactivity. However, PDF is not a
full-fledged language as is PostScript; it is declaratively, not programmatically,
specified. Consequently a sophisticated and expensive language runtime is not
necessary, as it is for PostScript.

58 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

You can think of Core Graphics Rendering as a “black box” that converts input to
PDF and then converts the PDF to various output formats. Figure 3-5 illustrates this.

Figure 3-5 Core Graphics Rendering inputs and outputs

The primary inputs for Core Graphics Rendering are the drawing commands and
statements made with QuickDraw and the native C APIs. (Future APIs in the front
end may be supported.) These commands and statements are immediately
converted to the required output format, whether that be bitmap data for screen
rendering, PostScript (for PostScript printers), or raster data for other types of
printers. The PDF can also be published “as is”; this happens automatically for print
preview. Future back-end converters, such as for plotters, may be supported.

Core Graphics Rendering, as the foregoing paragraph suggests, is the underlying
engine for the Mac OS X printing system. Printing is often a two-pass affair. Core
Graphics Rendering interprets the text and images constructed with the native C or
QuickDraw APIs and stores them in PDF form (the primary spooling format). Then
this PDF is fed through Core Graphics Rendering again to convert it to the
appropriate output format.

C API (native) QuickDraw

PostScriptPDF

Core Graphics Rendering

PDF

Screen
rendering

Raster data

Input

C H A P T E R 3

System Architecture

A Layered Perspective 59
Preliminary  Apple Computer, Inc. July 2000

The Printing System
The Mac OS X printing system provides a flexible and powerful new printing
environment for Macintosh users. The new printing system presents a refined user
interface that makes setting up a printer easy and intuitive for the average user, yet
it also has the necessary features to support the requirements of advanced users and
administrators. The printing system’s modular, client/server architecture

� makes it much easier for printer vendors to write Macintosh drivers and extend
printing dialog boxes

� uses PDF-based rendering, providing PDF capability for all printers, including
inexpensive raster printers

� allows applications to draw in “virtual pages” and map those pages to “physical
pages” at print time, breaking the connection between the drawing page and the
printing page

� provides applications and printer drivers control over individual user interface
elements in the system’s printing dialog boxes, obviating the need to completely
replace the standard Print or Page Setup dialog boxes with custom versions

A key aspect of the new printing system’s design is its robust support for Carbon
applications. Because the Carbon Printing Manager is supported on Mac OS 8 and
9 as well as Mac OS X, a Carbon application is able to print as expected in both
environments. For example, when running on Mac OS 8 and 9, the application
utilizes the traditional user interface and drivers. On Mac OS X, the application
automatically takes advantage of the new printing system’s more consistent set of
printing dialog boxes and flexible printing architecture.

User Interface

The Mac OS X printing system’s user interface provides a consistent, easy-to-use
environment for performing printing-related tasks such as locating local and
networked printers, configuring new printers, choosing printers, and managing
print jobs. The new printing system’s human interface allows users to handle
simple, everyday printing tasks and complex, multidocument, multiprinter,
Internet-based print jobs.

60 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

The printing system’s user interface consists of the following components

� PrintCenter. Allows the user to locate, select, and configure available printers,
and to determine the status of print jobs associated with each. PrintCenter also
allows the user to configure her computer as a publicly available IPP-based print
server.

� Page Setup dialog box. Allows the user to specify the format of the document
to be printed.

� Print dialog box. Allows the user to specify the parameters of a print job, and to
print a document on a specified printer.

The new printing system’s interface includes a number of important improvements
in both ease-of-use and stability relative to the Mac OS 8 and 9 printing model. The
Chooser—the most common source of user confusion when dealing with printers—
is replaced by PrintCenter, which combines many of the features of the Chooser and
desktop printing into a single, integrated interface. Unlike the Chooser, PrintCenter
is a separate application from the Finder, which eliminates the need for the Finder
to support the printing interface, simplifying code and improving system stability.
Desktop Printers have been eliminated; users now organize their printer selections
with lists of working printers. Much of the Desktop Printer functionality is
supported using aliases to working printers which can be placed on the desktop, or
in any folder the user desires. The Page Setup and Print dialog boxes are
standardized for all printers, and are easily extendable to allow for third-party
customization. The Print dialog box allows users to choose a variety of
destinations—printers, files, and fax, for example—using a convenient pop-up
menu.

Architecture Summary

The Mac OS X printing architecture consists of a set of nine modules. Conceptually,
these modules can be divided into client and server groupings. Four of the
modules—PrintCenter (with optional printer browser modules) and the Print Job
Creator (with optional printing dialog extensions)—make up the client side. These
modules are responsible for presenting all user interface elements, accepting the
raw drawing commands from applications, and passing the data to be printed on to
the print server. The remaining five modules—Queue Manager, Job Manager (with
optional converters), printer modules and I/O modules—constitute the printing

C H A P T E R 3

System Architecture

A Layered Perspective 61
Preliminary  Apple Computer, Inc. July 2000

system’s server “back-end,” which accepts print jobs from local clients and renders
them to the destination printer. These modules and their relationships are depicted
in Figure 3-6.

Figure 3-6 Mac OS X printing system

User

ApplicationPrinter
browser
module

Print
Center

Print
Job

Creator

Printer
dialog

extension

Queue
Manager

Job
Manager

Converter

Printer
module

IO
module

Printer

Raster/
PostScript

PDF

= Job ticket
= Query and status
= Asynchronous status

62 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

Here’s a brief description of the modules shown in Figure 3-6.

� Print Job Creator (PJC) Implements the Carbon Printing Manager API used by
applications. Displays the Print and Page Setup dialog boxes, captures drawing
information from applications, and passes the data to a local or remote Queue
Manager for printing.

� Printing dialog extensions (PDEs). Extends a Print or Page Setup dialog box,
allowing third parties to add user interface elements in support of specific
printers. A PDE is paired with a printer module which interprets and applies the
custom settings offered by the PDE.

� PrintCenter. Allows the user to locate and select printers, as well as control and
obtain status for print jobs.

� Printer browser module (PBM). Extends the PrintCenter by adding UI support
for additional printer connection methods such as SCSI and FireWire. A PBM is
paired with an I/O module, which implements support for the transport type.

� Queue Manager. Handles the queuing of print jobs after they leave the Print Job
Creator. Responds to requests from PrintCenter to manipulate or return status
information about print jobs in the queue. Reports errors back to the
PrintCenter, or directly to the user if PrintCenter is not active.

� Job Manager. Manages the various processes necessary to convert a single print
job into final printed output. Hosts printer modules and I/O modules.

� Converter. Assists the Job Manager by transforming a print job’s data format. A
converter might transform PDF to raster, for example.

� Printer module. Formats data for the printer (PostScript or PCL, for example)
and handles printer status and error conditions. Printer modules are typically
created by printer vendors to support a particular printer or printer family.

� I/O module. Implements a standard interface for a transport type. Apple
supplies modules for NetInfo, USB, TCP/IP, and AppleTalk. Third parties can
also create modules to support additional transport types.

� Job ticket. Contains all the necessary user choices to control the printing of the
job. Job tickets are created by the Print Job Creator and are updated by each
component at every step in the printing process.

C H A P T E R 3

System Architecture

A Layered Perspective 63
Preliminary  Apple Computer, Inc. July 2000

Printer Discovery

Before a user can choose a printer, the printing system must first compile a list of
available printers. The process by which the printing system locates available
printers is called “printer discovery.”

During printer discovery, the printing system compiles one list of available printers
per connection (transport) type. First, the Queue Manager enumerates all of the
known I/O modules, the connection types they support, and the printer browser
modules they are associated with. This information is passed to PrintCenter which
populates the connection pop-up menu with the connection types returned. When
the user selects a connection type, PrintCenter passes the requested connection type
to Queue Manager which then asks all the printer modules (through the Job
Manager) if they support it.

Once the Queue Manager knows which printer modules support the requested
connection type, it then asks those printer modules for information about printer
models and languages supported on that connection. Queue Manager passes this
information (along with any custom icons) back to PrintCenter, which in turn
passes it to the appropriate printer browser modules. The PBMs use the printer type
information to browse the selected connection type for printers. If a match is found,
the printer item is displayed in the browser window along with the icon and
language information.

When the user clicks a printer to add it to the workset, PrintCenter then gets the
selected printer address, icon, and printer model information from the PBM.
PrintCenter uses this information to create a new print queue and add it to the
workset.

The Printing Process

Before a document is printed, the user brings up the Page Setup dialog box so she
can define the document’s format. The application accomplishes this by calling into
the Print Job Creator (PJC). An optional printing dialog extension (PDE) hosted by
the PJC may extend the Page Setup dialog box to include options specific to the
application’s drawing environment—custom page layouts, for example. After page
setup is complete, the user requests that the application display (again using the
PJC) the Print dialog box, with which they define the parameters of the print job. As
with the Page Setup dialog box, the Print dialog box may include application- and/
or printer-specific options added by a PDE.

64 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

When the user dismisses the Print dialog box, the Print Job Creator accepts drawing
commands from the application (QuickDraw, Core Graphics, or a PDF file) and
passes the data to the Queue Manager along with a job ticket describing the printing
parameters. The Queue Manager then passes the data and job ticket to the Job
Manager, which is responsible for managing the rest of the printing process. Once
the job is sent to the Queue Manager, all errors associated with the job are reported
asynchronously back to the PrintCenter.

The Job Manager first consults the job ticket to determine the destination printer
and queries the destination printer’s associated printer module to find out what
data format it requires. If necessary, the Job Manager uses a converter to transform
the incoming data into a format that the destination printer module can accept.
Next, the Job Manager passes the data to the printer module, which is responsible
for converting the incoming data into the raw commands the printer will use to
render the data. Finally the Job Manager receives the printer-specific data from the
printer module and uses the I/O module appropriate to the printer’s connection
type to send the data to the printer.

Other Application Services
The other system services in the Application Services layer support all application
environments by supplying objects and behavior that affect the graphical user
interface. This section discusses some of the more prominent of these services.
Because of the evolving nature of Mac OS X, the composition of the Application
Services layer will change over time. Check the subframeworks of the Application
Services umbrella framework (ApplicationServices.framework) to learn what is
currently included.

Process Manager

The Process Manager manages all processes in Mac OS X. It controls access to
shared resources and manages the scheduling and execution of applications,
allowing multiple applications to share CPU time and other resources. The Finder
uses the Process Manager to launch applications when the user double-clicks an
application or a document icon. The Process Manager also provides a number of
routines that allow you to control the execution of processes, to launch processes,
and to get information about processes.

For related information on the Process Manager, see “Tasks and Processes”
(page 171) in the chapter “Inter-Environment Issues.”

C H A P T E R 3

System Architecture

A Layered Perspective 65
Preliminary  Apple Computer, Inc. July 2000

Carbon Event Manager

The Carbon Event Manager dispatches events to the appropriate event-handler for
that event, based on the type of event and the destination application environment.
The window server puts an event it receives on the run-loop port of the target
application process. The Carbon Event Manager gets the event from the port,
packages it in an appropriate form, and gives it to the deepest “container” possible
within the event-handling structure specific to the application (that is, Carbon,
Cocoa, or Java). To do this, the Carbon Event Manager must often determine which
window is currently the active one, whether there is keyboard focus in the window,
and so on.

For more on event handling in Mac OS X, see “Tracking a User Event” (page 71).

The Pasteboard

The pasteboard is a background server, similar to the Mac OS 9 Clipboard, that
allows you to transfer data between applications. The term “pasteboard” is
preferred to “clipboard” because the former connotes that the pasteboard can hold
multiple representations of the same data. The pasteboard is shared by all executing
applications and contains data that the user has cut or copied, as well as other data
that one application wants to transfer to another. It is used in copy-cut-paste
operations and as the data-transfer mechanism in drag-and-drop operations.

Core Services
The Core Services layer contains the system services that do not have any effect on
application’s graphical user interfaces. Core Services is associated with the Core
Services umbrella framework (CoreServices.framework).

66 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

Carbon Managers

The Core Services layer includes a number of Carbon managers that offer low-level
services to all application environments. These services include cooperative and
preemptive threading, resource management, memory management, and
file-system operations. Table 3-2 summarizes some of these managers.

Table 3-2 Carbon managers in the Core Services layer

Manager Description

Alias Manager Helps locate specified files, directories, or volumes using
aliases. It provides routines for creating and resolving
file-system alias records.

Collection
Manager

Provides an abstract data type for storing collections of
information.

Component
Manager

Enables your application to find and use various software
objects (components) at runtime. Also allows your application
to create and manage components.

Date, Time, and
Measurement
Utilities

Allows applications to obtain and manipulate information on
dates, times, geographic location, time zone, and units of
measurement.

File Manager Gives programs the ability to access files stored on physical
volumes, including hard disks, CD-ROMs, and Zip disks. It
handles Mac OS Extended (HFS+), Mac OS Standard (HFS),
UFS, NFS, and other supported file formats. The File Manager
routines create, open, update, save, and close files; search for
specific files or directories; obtain information about files or
directories; and perform other advanced file-related
operations. The File Manager supports Unicode and its APIs
are thread-safe.

Folder Manager Allows programs to find and search folders, create new ones,
and control how files are routed between folders. It includes
new support for domains.

Memory
Management
Utilities

Provides specialized routines useful for examining or
controlling certain aspects of the memory environment.

C H A P T E R 3

System Architecture

A Layered Perspective 67
Preliminary  Apple Computer, Inc. July 2000

Core Foundation

Core Foundation is a framework (CoreFoundation.framework) that provides
fundamental software services useful to application services, the application
environments, and to applications themselves. Among the benefits of using
Core Foundation is the increased capability for sharing code and data among
frameworks, libraries, and applications in different environments and layers. Core
Foundation also enables easy internationalization through Unicode strings and
provides abstractions that contribute to operating-system independence.

Memory
Manager

Controls the dynamic allocation of memory within an
application’s protected address space. It includes new
routines for allocating shared and persistent memory as
well as functions related to the virtual memory system in
Mac OS X.

Multiprocessing
Services

Enables programs to create and manage separate
preemptively scheduled threads. It also includes
synchronization services and atomic instructions.

Resource
Manager

Provides routines for creating, deleting, opening, reading,
modifying, writing, and getting information about resource
files. It includes support for data-fork based resources.

Text Encoding
Conversion
Manager

Provides two facilities—the Text Encoding Converter and the
Unicode Converter—that applications can use to perform text
conversions.

Text Utilities Offers an integrated set of routines for performing a variety of
operations on text, ranging from sorting strings to finding
word boundaries.

Thread Manager Enables programs to create and manage cooperatively
scheduled threads.

Time Manager Gives programs a way to schedule the execution of routines at
a specified time, either once or repetitively. This mechanism
for performing time-related tasks is hardware-independent.

Unicode Utilities Performs various operations on Unicode text, including
Unicode key translation.

Table 3-2 Carbon managers in the Core Services layer (continued)

Manager Description

68 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

Core Foundation uses the paradigm of opaque types; using these types, you can
create “objects,” each with its own individual identity and value (or set of values).
It offers special facilities for allocating memory when these objects are created, and
it has generic base types and polymorphic functions to facilitate intertype
operations.

Core Foundation includes opaque types corresponding to such programmatic
entities as strings, arrays, dictionaries, dates, numbers, and trees. It also features
an architecture (and corresponding APIs) for plug-ins as well as a mechanism
(with corresponding APIs) for dynamically finding and loading code and
locale-dependent resources. Additionally, it has services for accessing local and
remote resources via URLs, for setting up distributed notification centers, for
reading and writing XML property lists, for parsing XML, and for writing and
retrieving per-user and per-machine preferences.

Table 3-3 Core Foundation services

Services Types Description

Base
Services

CFAllocator,
base types

Defines the base types and polymorphic
functions that are used throughout the Core
Foundation API.

String
Services

CFString,
CFCharacter-
Set

Provides a full suite of fast and efficient
string manipulation and conversion
functionality. String Services offers seamless
Unicode support and thus greatly simplifies
internationalization. String Services also
facilitates the sharing of string data between
Carbon and Cocoa applications.

Bundle
Services

CFBundle Offers an elegant means of organizing and
locating many types of program resources
including images, sounds, localized strings,
and executable code.

Plug-in
Services

CFPlugIn Provides a standard plug-in architecture for
Mac OS X applications (as well as Mac OS 9
applications).

C H A P T E R 3

System Architecture

A Layered Perspective 69
Preliminary  Apple Computer, Inc. July 2000

Collection
Services

CFArray,
CFDictionary,
CFTree, CFSet, CFBag

Provides high-level abstractions of common
data structures—including arrays,
dictionaries (associative arrays or vectors),
and trees—along with associated
functionality.

URL
Services

CFURL
CFURLAccess

Gives programs a way to access, via URLs,
resources stored locally or remotely.

Property
List
Services

Offers a way to organize data into a form
that is meaningfully structured,
transportable, storable, and accessible, but
still as efficient as possible. The property list
API allows you to convert hierarchically
structured combinations of basic data types
to and from standard XML.

Preferences
Services

CFPreference Enables programs to store and retrieve user
preferences. See “The Preferences System”
(page 166) in chapter “Software
Configuration” for background information.

XML Parser CFXMLParser Provides a nonvalidating XML parser for
reading and extracting data from XML
documents.

Notification
Services

CFNotificationCenter, Implements distributed notifications, a
mechanism that allows a process to send
messages (notifications) to other processes
on the same machine.

Run Loop
Services

CFSocket,
CFRunLoop (and
related)

Provides low-level event-handling and
dispatch services.

Utility
Services

CFDate,
CFTimeZone,
CFNumber,
CFUUID,
CFByteOrder

Provides miscellaneous services such as date
and time computation and representation,
“object” wrapping of numbers, byte
swapping, and UUID generation.

Table 3-3 Core Foundation services (continued)

Services Types Description

70 A Layered Perspective
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

Apple Events

An Apple event is a high-level event that applications can send to other applications
on the same computer, on a remote computer, or even to themselves. Apple events
are the primary mechanism for interapplication communication on Mac OS X.
Applications typically use them to request services and information from other
applications, or to provide services and information in response to such requests.

A related technology, the system-level scripting language AppleScript, is also part
of Mac OS X. Users can use AppleScript to send Apple events to applications.

See “Interprocess Communication” (page 175) in the chapter “Inter-Environment
Issues” for further discussion of Apple events.

Open Transport

Open Transport is the primary user-level networking and communications
software for Mac OS X. It enables applications to use more than one networking
system at once (for example, AppleTalk to communicate with network printers and
TCP/IP to connect to the Internet). With Open Transport users can save and modify
different networking configurations and switch easily among them.

The version of Open Transport on Mac OS X supports the most commonly used
interfaces in Mac OS 8 and Mac OS 9. For example, it supports the Open Transport
endpoint routines for IP protocols. However, it does not include the
connection-oriented transaction-based endpoint feature (which should affect only
users of AppleTalk protocols such as ASP). Neither does it support the native XTI
(X/Open Transport Interface) interfaces or BSD¨ stream interfaces.

An important change from prior versions of Open Transport is the addition of client
context parameters to a number of functions. Each client of Open Transport now has
its own context so that Open Transport can track resources it allocates on behalf of
the client. A client in this case is an application or a shared library, and resources are
objects like endpoints, timer tasks, and blocks of memory.

C H A P T E R 3

System Architecture

Tracking a User Event 71
Preliminary  Apple Computer, Inc. July 2000

Tracking a User Event

The perspective that Figure 3-1 (page 43) gives of Mac OS X as layers of system
software suffices to illustrate the general interfaces and dependencies among parts
of the system. But it does not adequately convey the dynamism of the operating
system—in other words, how Mac OS X typically “works.” An alternative approach
to this static view of Mac OS X is one that follows a hypothetical user event through
the system, from the click of a mouse to the handling of the event by the appropriate
function or method in the appropriate application environment. It then traces,
through the layers of the system, a hypothetical chain of events set off by the
invocation of the function, resulting, in this case, in the drawing of a new object on
the screen (say, a dialog box).

72 Tracking a User Event
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 3

System Architecture

Figure 3-7 depicts the environments and subsystems that generate, repackage, and
forward an event along to its destination.

Figure 3-7 The handling of an event in Mac OS X

A low-level event originates when the device driver that controls an input device
such as a mouse or the keyboard detects a user action. The I/O Kit, which forms the
foundation of all device drivers on Mac OS X, creates the event and puts it in
the window server’s event queue (see “Core Graphics Services” (page 56) for a
discussion of the window server). This queue is in a block of memory shared by the
I/O Kit and the window server. Once the I/O Kit puts an event in the queue,
it notifies the window server via the Mach interprocess communication
mechanism (IPC).

The window server then takes the event off the queue and consults a database of
currently open windows. It sends the event to the event port of the run loop
belonging to the process that owns the window where the event occurred. The

Core and
Application Services

Application processes

Carbon

DefProc EventRef
handler

Callbacks

Cocoa

Target/action, NSEvent,
NSApp, etc.

Darwin

Event Manager

Run Loop
Per process

I/O Kit notifications (IPC)

Window Server

Driver Driver

C H A P T E R 3

System Architecture

Tracking a User Event 73
Preliminary  Apple Computer, Inc. July 2000

Carbon Event Manager gets the event from the run-loop port, packages the event in
an appropriate form, and passes it to the event-handling mechanism specific to the
application environment of the process. This mechanism ensures that the event is
handled by the function or method associated with the control that is clicked (or key
that is pressed).

The event-handling mechanism is different for each application environment:

� Carbon. Carbon has several mechanisms that applications can use to handle
events. The primary mechanism uses EventRefs, an opaque low-level event
structure. Handlers of EventRefs are installed on user-interface objects
(including default ones by the Human Interface Toolbox), and these
automatically receive all or some events destined for those objects. The handler
can ignore the event, handle it, or pass it on to the next handler in the enclosing
container. Event handling using DefProc messages and function callbacks is also
possible.

� Cocoa. In Cocoa an event is packaged as an NSEvent object. The object is sent to
the application object responsible for the overall management of an application
process. The application object forwards the NSEvent object to the “first
responder” view in the window in which the event occurred. Through a
“next-responder” mechanism, the object, if not handled, can travel up the
window’s view hierarchy until it arrives at the application object itself. If the
event is associated with a user-interface control, it is typically handled through
a mechanism called “target-action.”

� Java. Event handling in Java is implemented by the java.awt.Event and
java.awt.Component classes.

75
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 4

4 Bundles

A bundle is a directory in the file system that stores executable code and the
software resources related to that code. (It can contain only executable code or only
software resources, but that is unusual). The bundle directory, in essence,
“bundles” a set of resources in a discrete package. The resources include such things
as images, sounds, and localized character strings that are used by some piece of
software. Because code and associated resources are in one place in the file system,
installation, uninstallation, and other forms of software management are easier.

Applications, frameworks, and loadable bundles (including plug-ins) are types of
bundles. Internally, the structure of these bundle types is (or can be) quite similar.
What primarily differentiates applications, frameworks, and loadable bundles are
the characteristics and purpose of the executable code they contain. Each of these
types has its own required extension: .app, .framework, and .bundle (or whatever
extension is application-defined for a loadable bundle).

In a program, bundles are represented by programmatic entities such as instances
of a class or (in procedural languages) objects of opaque types. Routines of these
entities make bundle resources available to the program code that requests it. Other
routines enable you to load and link executable code into a running application.
Applications can load the code in loadable bundles whenever they need that code.
Frameworks automatically—and dynamically—load and link shared library code.

Bundles can contain multiple sets of resources, each set of which groups resources
by language, locale, and platform. By combining these sets of resources and
executable images into a single package, you can create one version of your
application, framework, or plug-in that executes properly on any supported
platform. Using this model, you can automatically localize an application’s human
interface according to the user’s system language preferences.

76 Benefits of Using Bundles
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 4

Bundles

Typically the Finder displays a bundle directory to users as a file to avoid
unwarranted tampering with the bundle’s contents. But the directory structure of
some bundles, such as frameworks, is not hidden. Whether the Finder displays a
bundle as a file or folder depends on several factors, including whether the bundle
bit—a Finder attribute—is set in the bundle directory. Finder also hides the
extensions from all application bundle names.

Benefits of Using Bundles

Bundles provide a variety of important advantages over the traditional Mac OS 8
software packaging scheme.

� A single bundle executable can run on Mac OS 8, Mac OS 9, and Mac OS X.

� A single bundle can support multiple chip architectures (PowerPC, x86), library
architectures (CFM, Mach-O), and other special executables (for example,
optimized libraries for AltiVec).

� A single bundle can support multiple languages through an internationalization
architecture. You can easily add new localized resources or remove unwanted
ones.

� Bundles can reside on volumes of many different formats, including multiple
fork formats like HFS, HFS+, and AFP, and single-fork formats like UFS, SMB,
and NFS.

� You can index and access Help files and other bundle information resources
through Sherlock.

� You can install, relocate, and remove bundles simply by dragging and dropping
them.

Note: Frameworks in the current release of Mac OS X are “versioned” bundles,
because their different internal structure reflects their scheme for versioning
dynamic shared libraries. This structure lacks many of the features of the newer
types of bundles. See the chapter “Frameworks” (page 103) for more information
on these types of bundles.

C H A P T E R 4

Bundles

Anatomy of a Bundle 77
Preliminary  Apple Computer, Inc. July 2000

Versioned bundles (described in “Anatomy of a Bundle” (page 77)) do not share the
first two features in the above list, namely support for multiple chip architectures
and an executable that can run on the various Mac OS systems.

Anatomy of a Bundle

Bundles contain executable code and can contain a variety of resources such as

� images

� sounds

� localized character strings

� Resource Manager-style resource files

� libraries and frameworks

� plug-ins and other loadable bundles

� archived user-interface definitions

Mac OS X supports two different layouts for bundle directories, the “new-style”
bundle and versioned. The directory layout for versioned bundles is inherited from
Mac OS X’s predecessor operating systems. The following example depicts this
layout:

MyBundle.bundle/
MyBundle (executable code)
Resources/

Pretty.tiff (nonlocalized resource)
English.lproj/ (localized resources)

Stop.eps
MyBundle.nib
MyBundle.strings

French.lproj/ (localized resources)
Stop.eps
MyBundle.nib
MyBundle.strings

78 Anatomy of a Bundle
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 4

Bundles

Although the newest development tools on Mac OS X create only new-style bundles
(with the exception of frameworks), the system bundle routines can read and
manipulate both styles of bundles.

The remainder of this section describes the layout of new-style bundles, explaining
where the executable code and resources go within a bundle. On disk, a bundle
exists as a directory hierarchy. Minimally, a bundle has the following structure:

Listing 4-1 A minimal bundle
(Legend: * = file; - = opened directory; + = closed directory)

- MyBundle
- Contents

* PkgInfo
* Info.plist

In other words, the Contents directory and, inside it, the PkgInfo and Info.plist
files must be present in a bundle. These files are important to how the bundle is
treated by Finder and other parts of the operating system. They describe the
bundle’s various attributes.

The information property list, Info.plist, contains key-value pairs stored in XML
format. These pairs specify attributes such as the name of the main executable for
the bundle, version information, type and creator codes, application and document
icons, and other meta data. System routines allow the bundle executable to read
these attributes at runtime. In addition to the default bundle attributes, subsystems
may place their own attribute information in the Info.plist file for easy access at
runtime. You are free to store any application-defined data in the information
property list as well. See “Information Property Lists” (page 156) in the chapter
Software Configuration for more on information property lists, including an
example of one.

The other special bundle file is called PkgInfo. This file contains only the type and
creator codes for the bundle. Although the information is redundant—it is kept in
the information property list as well—the PkgInfo file acts as a cache that improves
performance for applications such as the Desktop that need quick access to the type
and creator codes for files. See the chapter “The Desktop” (page 145) for more
information on how the Desktop and the Finder process the information in the
PkgInfo and Info.plist files.

C H A P T E R 4

Bundles

Anatomy of a Bundle 79
Preliminary  Apple Computer, Inc. July 2000

A special localized resource file named InfoPlist.strings goes with the Info.plist
file. The former file contains keys for the information property list that need to be
localized such as the CFBundleName key.

From the minimal bundle layout, a bundle directory can expand to a fully
fleshed-out bundle such as you might find in a complex application. The following
example shows what might go into such a bundle.

Listing 4-2 The bundle layout of a complex application
(Legend: * = file; - = opened directory; + = closed directory)

- MyBundle
* MyApp (alias to Contents/MacOSClassic/MyApp)
- Contents

- MacOSClassic
MyApp
Helper Tool

- MacOS
MyApp
Helper Tool

* Info.plist
* PkgInfo
- Resources

* MyBundle.icns
* Hand.tiff
* Horse.jpg
+ WaterSounds

 - en_US.lproj
* bird.tiff

 * Bye.txt
* house.jpg
* house-macos.jpg
* house-macosclassic.jpg
* InfoPlist.strings
* Localizable.strings
+ CitySounds

 - en_GB.lproj
* bird.tiff

 * Bye.txt
* house.jpg

80 Anatomy of a Bundle
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 4

Bundles

* house-macos.jpg
* house-macosclassic.jpg
* InfoPlist.strings
* Localizable.strings
+ CitySounds

 - Japanese.lproj
* bird.tiff

 * Bye.txt
* house.jpg
* house-macos.jpg
* house-macosclassic.jpg
* InfoPlist.strings
* Localizable.strings
+ CitySounds

+ Frameworks
+ Plug-ins
+ SharedFrameworks
+ SharedSupport

Although there are different types of bundles, they all share certain features. At the
top level of the bundle there is always a Contents directory. The Resources,
Frameworks, SharedFrameworks, SharedSupport and Plug-ins directories are optional
and appear only as necessary.

Important
You should avoid hard-coding directory paths to items
within bundles because the internal structure of bundles
could change. Instead, use the appropriate bundle APIs
provided by Apple.

Several directories contain, as their names suggests, executable code for specific
platforms. When a bundle’s code is requested, the system searches for code in the
format appropriate to the underlying operating system. The names of the
platform-specific executable directories are MacOSClassic and MacOS. The name of
the executable file inside these directories is typically the same name as the bundle
name (minus the extension).

Resources can be localized or nonlocalized—that is, suitable for all localizations.
Each set of localized resources goes into its own directory in the bundle. The
Resources directory contains resource files grouped according to a language and,
possibly, a region where a variant of that language is spoken. These directories have
the extension of .lproj (the “l” means “language”). Each such directory contains all

C H A P T E R 4

Bundles

Anatomy of a Bundle 81
Preliminary  Apple Computer, Inc. July 2000

localizable resources for a particular language and often region-specific versions of
that language. Nonlocalized resources are put in the level directly above the .lproj
directories as there need be only one version of these files. One of these nonlocalized
resources is the icon file for the bundle (which is the application icon if it’s an
application bundle). By convention, this file takes the name of the bundle and an
extension of .icns; the image format can be any supported type, but if no extension
is specified, the system assumes .icns. See “Localized Resources” (page 85) for
more on bundle resources.

A bundle almost always stores each resource in its own file instead of grouping
them in a single file, as does the Mac OS Resource Manager. Localizable strings,
however, are stored together in a “strings” file (so called because it has an extension
of .strings). The reason for storing localizable strings in one file is that the contents
can then be easily cached for better performance.

Important
You should not package resources in the resource fork of the
bundle’s executable files.

The Frameworks directory contains frameworks that are inextricably bound to the
application. These dynamic shared libraries of these frameworks are
revision-locked and will not be superseded by any other, even newer, versions that
may be available to the operating system.

The SharedFrameworks directory contains frameworks that are also part of the
application package; but the versions of these frameworks will be checked against
the system registry to see if there are more recent versions available. If a more recent
version is found in the system, the version in the SharedFrameworks directory is
ignored. The inclusion of versioned frameworks in the application package makes
it possible for an application to be completely self-contained. An application can be
installed, relocated, and removed with a simple drag and drop.

The Frameworks, SharedFrameworks, Plug-ins, and SharedSupport directories occur
mostly in application bundles. See the chapter “Application Packaging” (page 91)
for further information on these directories.

82 The Finder and Bundles
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 4

Bundles

The Finder and Bundles

When you create a bundle, the build system can set a Finder attribute called a
“bundle bit” in the bundle folder. Before the Mac OS X Finder displays a bundle in
one of its windows, it reads this attribute. If the bundle bit is turned on, the bundle
appears as a file package. A file package is a folder that the Finder presents to users
as if it were a file (see Figure 4-1 (page 82)). In other words, the Finder hides the
contents of the folder from users. This opacity discourages users from inadvertently
(or intentionally) altering the contents of the bundle.

Figure 4-1 The Finder’s bundle bit

Some bundles might not have the bundle bit set; this is the case with
Apple-provided bundles. Yet the Finder can still handle them appropriately. As
explained in the next section (“Types of Bundles” (page 83)), bundle folders should
have extensions indicating their type—.app, .framework, .bundle , and so on. When
the Finder encounters one of these folder extensions and determines that the folder
is indeed a bundle, it does the proper things:

� Except for frameworks, it displays the bundle as a file package.

Frameworks are displayed as folders so that you can browse their header files.

� If the bundle is an application (also known as an application package), Finder
hides the .app extension.

� It extracts or computes the runtime information it needs from the bundle (type
and creator codes, for instance) and updates its databases with it.

Bundle bit ON Bundle bit OFF

C H A P T E R 4

Bundles

Types of Bundles 83
Preliminary  Apple Computer, Inc. July 2000

For more information on the Finder and how it handles bundles and documents, see
the chapter “The Desktop” (page 145).

Types of Bundles

Mac OS X recognizes at least three distinct types of bundles:

� Application. For Mac OS X applications, the application package is a bundle
that contains the resources needed to launch the application, including the
application executables.

� Framework. A framework is a bundle containing a dynamic shared library and
all the resources that go with that library, such as header files, images, and
documentation.

� Loadable bundle. Like an application, a loadable bundle usually contains
executable code and associated resources. Loadable bundles differ from
applications and frameworks in that they must be explicitly loaded into a
running application. There are some special types of loadable bundles, two of
which are especially noteworthy.

� Palette. A palette is a type of loadable bundle specialized for Interface
Builder. It contains custom user-interface objects and compiled code that are
loaded into an Interface Builder palette.

� Plug-in. A plug-in is a special type of loadable bundle that requires an
architecture and an implementation above and beyond the simple
code-loading and function-lookup functionality of the regular bundle
programming interfaces.

In addition, kernel extensions (KEXTs) are a type of loadable bundle that the
system bundle routines recognize and handle appropriately (although their
internal structure is different from other loadable bundles). These bundles have
an extension of .kext. The Kernel Manager, which claims KEXTs as a document
type, dynamically loads them into the kernel environment.

Bundles must have an extension appropriate to their type. For applications, that
extension is .app. For the developmental variants of applications, the extensions
should be .debug and .profile. The extension for frameworks is .framework.
Plug-ins and other loadable bundles can have any extension, but it should be

84 Types of Bundles
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 4

Bundles

an extension claimed by an application that knows how to load the bundle; the
generic extension for loadable bundles is .bundle. The Finder does not show the
.app extension.

An Application’s Main Bundle
With the exception of some command-line tools, every application has at least one
bundle—its main bundle—which is the folder where its resources and executable
files are located. Application bundles should have an extension of .app (for shipping
applications), .debug (for applications with debug symbols), or .profile (for
applications with profiling data). The Finder hides the .app extension from users.

Framework Bundles
Frameworks are bundles that package dynamic shared libraries,
interface-definition files, images, and other resources that support the executable
code along with the header files and documentation that describe the associated
programming interfaces. As long as your applications are dynamically linked with
frameworks, you should have little need to do anything explicitly with those
frameworks thereafter; in a running application, the framework code is
automatically loaded and linked, as needed. Frameworks should have an extension
of .framework.

Loadable Bundles and Dynamic Linking
In addition to the main bundle and the bundles of linked-in frameworks, an
application can be organized into any number of other bundles. Although these
loadable bundles usually reside inside an application file package, they can be
located anywhere in the file system. An application can dynamically load the code
and resources in a bundle when it needs them. For example, an application for
managing PostScript printers may have a bundle containing PostScript code to be
downloaded to printers.

The executable code in loadable bundles can be dynamically linked into an
application while it runs. Using various code-loading programming interfaces,
functions from loadable bundles can be looked up by name and called through
function pointers. This newly linked code can then use a bundle identifier to obtain
an instance for its bundle. Through this bundle instance, the code can locate and
load additional resources packaged in the bundle.

C H A P T E R 4

Bundles

Localized Resources 85
Preliminary  Apple Computer, Inc. July 2000

Loadable bundles should have an extension. The conventional extension for
loadable bundles is .bundle and, for Interface Builder palette bundles,.palette.
Although the extension can be anything, it ideally should be an extension claimed
by one or more applications that can load the bundle. These bundles are then
associated with your application (by the Desktop) and will launch your application
when the user double-clicks them.

Localized Resources

If a bundle is to be used in more than one part of the world, its resources may need
to be customized, or localized, for language, country, or cultural region. For
example, an application may need to have separate Japanese, English, French, and
Swedish versions of the character strings that label menu commands. An
application may also need to accommodate regional language variation—British
and American English, for example.

Bundles solve this problem by grouping resources together into directories named
for their region and language with the extension.lproj. Region-specific resource
directories should take their names from the ISO 3166 standard for country codes,
and the ISO 639 standard for language codes (see http://www.iso.ch). You would
place resources specific to the dialect of French spoken in France in a directory
named fr_FR.lproj , whereas you would place resources specific to Canadian
French in a directory named fr_CA.lproj. Localized resources that need not be
region specific should be placed in directories named simply for the language, such
as English.lproj or Japanese.lproj. These localized resource directories are then
placed in a directory named Resources within the bundle’s Contents directory.
Nonlocalized (global) resources are kept in the top level of the Resources directory.
See the section “Anatomy of a Bundle” (page 77) for an example of a complex
bundle’s file system layout.

The user determines which set of localized resources are actually used by the
bundle at runtime. Bundle-related system routines rely on the language preferences
set by the user in the Preferences application. Preferences lets users create an
ordered list of available regions so that the most preferred region is first, the second
most preferred region is next, and so on. When a bundle is asked for a resource file,

86 Localized Character Strings
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 4

Bundles

it returns the file-system location of the resource that best matches the user’s region
preferences. See the section “Search Algorithm” (page 86) for details on the exact
process Mac OS X uses to locate a bundle resource.

Localized Character Strings

One very common resource type is a strings file (which, by convention, has an
extension of .strings). Strings files are used for character strings that must be
localized. They are essentially dictionaries that map a string in the development
language to the localized version of the string. The key is not required to be the
development language version of the string, but this convention is usually used.

System routines know how to locate and load the strings file (like any other
resource) and then look up the string you want all in one step. It also provides
caching so multiple lookups from the same table do not require locating and
loading the strings file again.

Because strings files are used so frequently, the Mac OS X development
environments provide special macros and tools for working with them. Consult the
development-environment documentation for details

Search Algorithm

When you use a bundle-specific programming interface to locate a given resource,
it performs a search to ensure that the right version of the resource is returned to
you. Because resources can be global or localized as well as platform specific, the
search may be complex. Various resource-finding APIs insulate you from potential
changes to the bundle packaging scheme and handle a lot of tricky searching issues
for you. You should always use these APIs instead of groping around inside the
bundle yourself.

The Figure 4-2 details the steps a system routine uses to locate a resource.

C H A P T E R 4

Bundles

Search Algorithm 87
Preliminary  Apple Computer, Inc. July 2000

Figure 4-2 Locating a resource in a bundle

Search for a
Global Resource
Search For A

Global Resource

Search for a
Platform Specific

Resource

Search For A
Platform-Specific

Resource

Return the
Platform-Generic

Resource

Return The
Platform-Generic

Resource

Return the
Platform-Specific

Resource

Return The
Platform-Specific

Resource

Yes No

Search For A Localized Resource

Resource
Found

Resource
Found

Resource
Found

Resource
Found

Search For A Region-Specific Resource
Using User's Region Preference

Yes No

Yes No

Yes No

Yes No
Resource

Found
Resource

Found
Search For A Resource in

Bundles Development Language

Resource
Found

Resource
Found

Search For A Resource in
Bundles Development Region

Resource
Found

Resource
Found

Search For A Resource Matching
Preferred Region's Language

Search Failed
Return NULL

Search Failed,
Return NULL

Resource
Found

Resource
FoundYes No

88 Bundles and the Resource Manager
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 4

Bundles

Notice that global resources take precedence over localized resources. In fact, there
should never be both a global and localized version of a given resource. If there is a
global version of a given resource, localized versions of that same resource will
never be found. The reason for this precedence is performance. If the localizable
resources were searched first, the bundle routines might search needlessly in
several localized resource folders before discovering the global resource. Also
notice that in order to find a platform-specific resource, the platform-generic
version must exist. Again, the reason is performance. You should generally make
one platform’s version of the resource generic and provide platform-specific
versions for any other platforms.

When a resource-locating routine finds a resource, it checks to see if a
platform-specific version exists. Platform-specific resources are named using
standard identifiers. The names you can use when making platform-specific
resources are macosclassic (on Mac OS 8) and macos (on Mac OS X). You construct
the name of a platform-specific resource by combining the platform-generic name
with the platform identifier string. For example, if you have a resource named
Fish.jpg, its Mac OS 8–specific name would be Fish-macosclassic.jpg. When an
application running on Mac OS 8 requests the resource Fish.jpg, the bundle routine
also checks to see if Fish-macosclassic.jpg exists in that same folder. If it does, the
routine returns the path to the platform-specific resource; if it does not, it returns the
path to Fish.jpg. As was mentioned previously, for Fish-macosclassic.jpg to be
found, a file named Fish.jpg must exist in the same folder (including
language-specific resource directories).

Bundles and the Resource Manager

A bundle can contain any number of .rsrc files, which are treated as bundle
resources just like any other kind of file. It is possible to use the CFBundle API to
get a CFURL to such a file, convert that to an FSRef, and then open it using the
Resource Manager. There are, however, two special resource files that CFBundle
will manage for you if you provide them. One is for non-localized resources, and it
is called executable name.rsrc, where executable name is the name of your main
executable. This file is stored with the other nonlocalized resources, in the Resources
directory. The other file is for localized resources, and it is called Localized.rsrc.

C H A P T E R 4

Bundles

Bundles and the Resource Manager 89
Preliminary  Apple Computer, Inc. July 2000

This file is stored in the appropriate .lproj directory, one version for each language
or region. Note that the resources should be stored in the file’s data fork, not the
resource fork.

When an application is launched, Bundle Services automatically attempts to open
these files so that your application's resources are always available. For other
bundles—frameworks and loadable bundles—you must do this yourself using the
CFBundle function provided specifically for this purpose.

If for some reason you are unable to convert your Carbon application to the bundle
scheme, you can include the information property list (Info.plist) in your
single-file application as a resource of type 'plst', id 0.

An Application Is a Bundle 91
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 5

5 Application Packaging

A typical application in Mac OS X is not a single executable file but a package of files
that includes one or more executable binaries. An application is a type of bundle—
a directory in the system that contains, in a hierarchical organization, the
application executable and the resources to support that code. An application is also
a file package, a directory that the Finder presents to users as a file.

The design of application packages arises from the recognition that a running
application is more than just the executable code that gets launched. Several
advantages come with this internal organization, among them ease of installation
and uninstallation, the inclusion of multiple localizations, support for multiple
architectures and volume formats, and the capability for a single application to run,
without modification, on Mac OS 8, Mac OS 9 and Mac OS X.

Although an application is structurally a bundle, some bundle components are
found mainly, and sometimes only, in applications. Users tend to think of such
things as help information, preferences, wizards, and plug-ins as application
resources. Although, technically, nothing prevents these resources from belonging
to, say, a loadable bundle, they are commonly associated with applications. This
chapter focuses on how these resources are packaged in an application bundle. For
a general description of bundles, see the chapter “Bundles” (page 75).

An Application Is a Bundle

An application in Mac OS X is packaged as a type of bundle. A bundle, to echo the
definition in the chapter “Bundles” (page 75), is a directory containing executable
code and the resources to support that code. Application bundles as well as

92 An Application Is a Bundle
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 5

Application Packaging

loadable bundles (such as plug-ins) are file packages, directories that the Finder
presents to users as a single file. The major distinguishing characteristic between the
types of bundles—applications, frameworks, plug-ins, and other dynamically
loadable packages of code and resources—is the nature of the executable.
Application executables are generally self-sufficient binaries that users can launch
from the Finder, usually by double-clicking. Applications may or may not contain
secondary bundles, such as plug-ins, but they always contain their main bundle.

Bundles bring a number of benefits that are either specific to applications or that
apply mostly to them:

� The same (Carbon) application package can run, without modification, on
Mac OS 8, Mac OS 9, and Mac OS X.

� Applications can include different localizations. Applications can automatically
display the set of localized resources that matches a user’s language preference.
Moreover, you can add a new localization to the application package, and it
displays those resources (if they are for a preferred language) after the user
relaunches the application.

� Client computers may run applications on a server.

� Customers can easily download applications from a website or email them.

� Applications are easy to install and uninstall; all the user must do is drag the
application package onto a volume or, for uninstall, drag it to the Trash. (This
feature does not preclude more complicated installations from taking place.)

� Because applications are file packages, users cannot “break” them by removing
or changing essential parts of them. Users can, however, change the names of
applications without affecting them.

� Applications can support multiple architectures as well as multiple volume
formats.

What makes these features possible is the hierarchical internal organization of
bundles. The different pieces of an application go in specific named locations within
the application package. This standard internal organization of the pieces of an
application enables related parts of the operating system—such as the Finder and
the resource-finding and code-loading mechanisms of the system—to perform their
functions. For example, executable files for multiple platforms (Mac OS 9 and
Mac OS X) are put in separate subdirectories with standard names. The same goes
for localized resources, plug-ins, and private and versioned frameworks.

C H A P T E R 5

Application Packaging

Application Frameworks, Libraries, and Helpers 93
Preliminary  Apple Computer, Inc. July 2000

The Finder, Sherlock, Navigation Services, and other Apple-provided applications
and services that browse or examine the file system do not descend into application
packages. The Finder responds to double-clicks on an application package by
launching the application.

As they do with other bundles, Apple’s development tools support the creation of
application packages.

For additional general information about bundles, see the chapter “Bundles”
(page 75). For further information about the Desktop, the Finder, and their roles in
relation to applications, see the chapter “The Desktop” (page 145).

Application Frameworks, Libraries, and Helpers

Applications sometimes have supplementary code modules—that is, code that isn’t
compiled into the application executable. This supplementary code may take the
form of a framework, a shared library (CFM or otherwise), a plug-in, a helper
application, or some other type of software.

There are various reasons for this compartmentalizing of application code. One is
efficiency; for example, a software developer might have a suite of applications that
all rely on the same framework or that make use of the same helper application,
such as a custom document viewer. Another reason is performance; an application
may decide to defer loading a module such as a plug-in until the user requests it. Or
an application may be designed from the outset to be extensible.

The frameworks and shared libraries in the application packages are those needed
for the application to run, or at least to be complete. However, the application
package does not include the Apple-supplied frameworks the application links
with. These are installed in the standard system location /System/Library/
Frameworks. Installers should not delete frameworks in an application package
or move them somewhere else; this includes frameworks that are shared (see
“Shared Frameworks and the Central Directory” (page 95) for the handling
of shared frameworks).

94 Application Frameworks, Libraries, and Helpers
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 5

Application Packaging

The application bundle has four directories for the various types of supplementary
code:

Frameworks/

SharedFrameworks/

SharedSupport/

Plug-ins/

The remainder of this section explains the purposes and issues related to the first
three of these directories. For a description of the Plug-ins directory, see
“Applications and Loadable Bundles” (page 97).

Private Frameworks
The Frameworks directory contains frameworks (or shared libraries) that are
inextricably bound to the application. These frameworks are private to the
application. Only the application itself uses the frameworks in this directory, and
no other application does, including applications in the same “suite” or from the
same developer. The dynamic shared libraries of these private frameworks are
revision-locked and will not be superseded by any other, even newer, versions that
may be available to the operating system.

An application always uses the code in Frameworks whereas it may or may not use
the code in SharedFrameworks. If a framework or shared library is missing from
Frameworks, the application cannot launch.

Listing 5-1 illustrates how a typical private framework might be stored in the
application bundle.

Listing 5-1 Location of an application’s private framework

FantasticApp.app/
Contents/

PkgInfo
Info-macos.plist
MacOS/
Resources/
Frameworks/

GoodStuff.framework/

C H A P T E R 5

Application Packaging

Application Frameworks, Libraries, and Helpers 95
Preliminary  Apple Computer, Inc. July 2000

SharedFrameworks/
SharedSupport/
Plug-ins/

Shared Frameworks and the Central Directory
The SharedFrameworks directory contains frameworks that are also part of the
application package, but these frameworks are meant to be shared with other
applications. Shared frameworks of an application are guaranteed to be forward
compatible, whereas frameworks private to an application don’t have to be.

To facilitate sharing of the most recent version of code in SharedFrameworks,
Mac OS X uses a central directory, or registry. This central directory tracks the
versions of shared frameworks and other shared software in all installed
application packages. Before an application dynamically loads framework code, the
system checks the version of the required framework in SharedFrameworks against
the central directory to see if more a recent version of the same framework is
available. If a more recent version exists, the framework in the SharedFrameworks
directory is ignored and the one identified by the central directory is used. If no
corresponding framework is found in the central directory, or if the version of the
framework it is earlier, the framework in the application’s SharedFrameworks
directory is used.

The inclusion of shared frameworks and other shareable software in the application
package contributes to application self-sufficiency. To install, relocate, or remove an
application, users simply drag the application icon and drop it the appropriate
place. An application so installed might not use the most recent version of a shared
framework, but at least it should be able to execute with the frameworks packaged
with it. By keeping track of versioned frameworks within all application packages,
the central directory ensures that an application remains “read-only” and that
pieces of it are not duplicated all over a system. At the same time, the central
directory makes it possible for related applications to use the latest shared
frameworks installed on a system.

96 Application Frameworks, Libraries, and Helpers
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 5

Application Packaging

Listing 5-2 shows where shared frameworks go in an application package.

Listing 5-2 Location of an application’s shared framework

FantasticApp/
Contents/

PkgInfo
Info-macos.plist
MacOS/
Resources/
Frameworks/
SharedFrameworks/

GreatStuff.framework/
SharedSupport/
Plug-ins/

Other Shared Application Code
Any supplementary, shareable application code that is not a framework, shared
library, or loadable bundle (including plug-ins) goes in the SharedSupport directory
of the application package. Examples of this class of code are helper applications,
assistants, and tools. As with shared frameworks, the latest versions of software in
this directory is shared among related applications using the central-directory
mechanism.

In the example in Listing 5-3 (page 97), FantasticSpreadsheet, which is part of an
office-productivity suite of applications, includes a small graphing application in
SharedSupport. The FantasticSpreadsheet application and its sibling application,
FantasticDatabase, jointly use FantasticGrapher.

When FantasticSpreadsheet is installed, the version of FantasticGrapher is recorded
in the central directory. When the user attempts to run FantasticGrapher, the system
checks the version of the helper application in SharedSupport against the latest
version of the same application in the central directory. It runs whichever version is
most recent.

C H A P T E R 5

Application Packaging

Applications and Loadable Bundles 97
Preliminary  Apple Computer, Inc. July 2000

Listing 5-3 Location of an application’s shared code (nonframework)

FantasticSpreadsheet/
Contents/

PkgInfo
Info-macos.plist
MacOS/
Resources/
Frameworks/
SharedFrameworks/
SharedSupport/

FantasticGrapher
Plug-ins/

Applications and Loadable Bundles

Loadable bundles contain code and programming resources that an application can
dynamically load at runtime. The most common type of loadable bundle is a
plug-in, but there can be others, such as Interface Builder palettes. Loadable bundles
are somewhat different from frameworks and can have a slightly different relation
with applications.

Loadable bundles are bundles just as much as application packages. They can thus
contain all the things an application can, such as private frameworks, shared
frameworks and other supplementary code, including other plug-ins and other
loadable bundles. (Frameworks, on the other hand, are “versioned” bundles with a
different internal organization, among other differences. See the chapter
“Frameworks” (page 103) for more information on frameworks.)

98 User Resources in Applications
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 5

Application Packaging

Plug-ins and other loadable modules are divided into three categories based on how
essential they are to an application:

� those that an application requires to run

� those that are not essential to execution but that are considered part of an
application because users generally want to use them (a tools palette, for
example)

� those that meet neither of the above criteria but offer some additional
functionality (often provided by third-party developers)

Plug-ins and other loadable bundles that meet the first two criteria should be
packaged in the Plug-ins directory of the application bundle. They should always
be packaged with the application so they come along if the user moves the
application to another location. If a loadable bundle is in the third category, the
convention for users is to install it in the Library/Application Support folder of the
logged-in user’s home directory (local or remote). System administrators or expert
users can install such a loadable bundle in the Library/Application Support folder
of the system-local or network domains to make it more widely available.

Regardless of where a plug-in or loadable module is stored, it is the responsibility
of the application to provide some human-interface mechanism enabling users to
select them (as files, not directories).

User Resources in Applications

An application can come packaged with a variety of resources. These resource can
range from those that are closely tied to the application’s executable, such as sound
files and localized strings, to more “external” resources such as application help,
preferences, and clip art. Resources are typically stored in the Resources directory
of the application bundle.

However, application resources might not be stored in the application package for
a variety of reasons. One reason for this separation is to make it possible for
applications to run in a net-booted environment. Other reasons are to make the
resources accessible in the file system and to separate resources provided by
third-party contributors from those provided by the application’s developer. See
the following sections for information on the preferred locations.

C H A P T E R 5

Application Packaging

User Resources in Applications 99
Preliminary  Apple Computer, Inc. July 2000

Application Help
On Mac OS X, the Help Viewer application displays help information for both
applications and more general help. (Help Viewer is part of the Apple Help
product.) You should store application help files in the appropriate location in the
application’s Resource directory. You can package the files in a help book (the
standard format for Mac OS 9) or in a help bundle—which has the same internal
organization as any bundle and that takes the extension of .help. The files (plus
associated images) in help bundles or help books can be localized for multiple
languages and regional dialects. The text files must be HTML 3.2-compliant and
otherwise conform to the specification for Apple Help books. See the Apple Help
SDK documentation for instructions on creating help bundles and preparing and
indexing help files.

The information property list (Info.plist) of an application should contain a key,
CFBundleHelpBookFolder, whose value specifies the name of a directory in the
Application’s Resources directory that contains help. If this directory is a .help
bundle, it goes in the top-level location of Resources reserved for nonlocalized
resources; it belongs in the nonlocalized location since bundles contain their own
localized resources. If help is in the form of a help book, one or more localized books
go in the appropriate .lproj directories of Resources; the name of each book
directory must be the same—that is, they should not be localized.

When a user chooses the Help menu command for the application (for example,
MyApp Help), the application can call system functions that might use the
CFBundleHelpBookFolder key to locate the version of help corresponding to the
user’s language preference. It then requests the Help Viewer to display the help.
The Apple Help APIs give applications other options related to help, such as
opening a help book using the title, opening a help file using the full directory path
to the file, and performing a search for a particular term or anchor.

If you package help in a help bundle, the Info.plist file for the bundle must contain
a CFBundleHelpTOC key-value pair. The value specifies the HTML file in the
bundle that contains the special meta tags required by Apple Help. This file is
typically the “entry point” or first page of the help.

Note: Although help bundles are the preferred packaging format in Mac OS X—
because of the internationalization infrastructure they afford—Help Viewer can
also understand Mac OS 9 help books.

100 User Resources in Applications
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 5

Application Packaging

You can also put application help as well as more general help, in both book and
bundle form, outside the application package. Such help should go in one of the
standard locations for third-party help: /Network/Documentation/Help or Library/
Help in the user’s home directory. When the user launches the Help Center from the
Finder, Help Viewer scans these locations and displays a link to the application
help. However, application help external to the application is discouraged because
it runs counter to the “all in one place” model of the application package. If your
application help is in the form of a help book, and you have it installed in one of the
standard locations for help, you do not need to specify any special key-value pairs
in the application’s information property list.

Application Preferences
Applications typically are installed with a default set of preferences that users can
then change to suit their working habits. Part of any application’s code is devoted
to displaying the range of preference options, accepting user choices, and writing
these choices to the preferences system (see “The Preferences System” (page 166) in
the chapter “Software Configuration”).

Your application should never write user-preference data inside the application
package. Preferences are stored in the Library/Preferences folder of the logged-in
user’s account (local or network) or in the same location in the machine-local or
network domains. You should never write preferences data directly to these
locations; instead use the APIs offered by Core Foundation’s Preference Services
(CFPreferences) or, for Cocoa applications, NSUserDefaults. Part of the reason for
the separation of user preferences from the application package is to make it
possible for applications to run in a net-booted environment.

Document Resources
Applications that are document-centric—word processors, spreadsheets, drawing
applications, to name a few—often include resources such as templates, clip art,
tutorials, and wizards. These items can either be packaged in the application bundle

C H A P T E R 5

Application Packaging

User Resources in Applications 101
Preliminary  Apple Computer, Inc. July 2000

or in a location external to the application package. The rule of thumb for deciding
where such a resource goes is similar to that for plug-ins and other loadable bundles
(see “Applications and Loadable Bundles” (page 97):

� If the resource is provided by the application developer, it should go in the
SharedSupport directory of the application bundle.

� If the resource is from a third party, it should go in one of the standard directory
location for application resources, such as in the user’s Library/Application
Support folder.

As with loadable bundles, the application should provide some kind of resource
browser that displays application resources (both internal and external to the
package) and allows the user to select from them. The browser, however, should not
divulge the inner structure of the application package.

103
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 6

6 Frameworks

A framework is a type of bundle that packages a dynamic shared library with the
resources that the library requires, including header files and reference
documentation. This consolidation of code and resources brings with it a number of
benefits. For example, it makes it easier for the library to locate its resources, and it
makes installation and uninstallation easier on the user.

A framework bundle has an extension of .framework. Inside the bundle there can be
multiple major versions of the framework. A network of symbolic links at the top
level of the framework folder point to the most recent versions of library code and
resources. The dynamic link editor writes the directory location in which to install
a framework into the framework executable. When a program is launched, if the
dynamic link editor cannot find a framework in this location, it looks in the
standard directory locations for the framework. System and third-party
frameworks are often installed in standard directory locations. Third-party
frameworks can also be included in application packages that need those
frameworks.

The executable code in a framework is a dynamic shared library. Multiple,
concurrently running programs can share the code in this library without requiring
their own copy. Unlike statically linked shared libraries, the binding of undefined
symbols in a program linked with a dynamic shared library is delayed until the
execution of the program. The dynamic link editor attempts to resolve undefined
symbols at runtime when those symbols are referenced in the program. If a symbol
in a library module is not referenced in a program, that module is not linked. The
installation paths of dynamic shared libraries are written into all executables built
with those libraries.

Frameworks can have major (or incompatible) versions and minor (or compatible)
versions. The major versioning scheme provides for backward compatibility.
Frameworks that are incompatible with programs linked with a previous version of
the library are given a new major version. Those programs must link with an earlier

104 The Framework as a Library Package
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 6

Frameworks

version, which is kept inside the framework bundle. The minor versioning scheme
provides for forward compatibility. A major version of a framework can
incorporate a number of minor versions. A minor version denotes the framework
compatibility of programs linked with later builds of the framework.

The Framework as a Library Package

When libraries are installed in some computing environments, they are put in one
location in the file system and resources related to that code are installed elsewhere.
These related resources include header files as well as things such as images and
localized strings. This scattering of code and resources can contribute to several
problems:

� It complicates uninstallation of the library and its resources.

� It leads to a greater risk of mismatches between libraries and header files.

� It can make it more difficult for library code to locate resources.

Frameworks solve this problem by bundling a dynamic shared library with the
resources used by the library or otherwise related to it. Indeed, “bundling” is an apt
term because frameworks are bundles as much as applications and plug-ins are.
However, frameworks differ in some significant ways from other types of bundles:

� Frameworks include a unique type of resource—header files. They can also
contain as a resource anything else that is appropriate, such as private static
libraries.

� The bundle bit is not set when a framework is built. As a result, the Finder does
not treat the framework as a file package—a directory presented as a file—and
thus developers can browse the packaged header files.

� Frameworks are versioned bundles, which are described in “The Internal
Structure of Frameworks” (page 105).

Note: Frameworks in the current release of Mac OS X are “versioned” bundles.
Their internal directory structure lacks many of the features of the newer types of
bundles, applications and loadable bundles. See “Anatomy of a Bundle”
(page 77) in the Bundles chapter for a description of new-style bundles.

C H A P T E R 6

Frameworks

The Framework as a Library Package 105
Preliminary  Apple Computer, Inc. July 2000

Versioned bundles have an internal structure derived from Mac OS X Server (and
prior) bundles. Apple will eventually convert frameworks to the new internal
structure. Until then, Mac OS X will support both styles of bundles; the system
routines for bundles can deal with both versioned bundles and the more recent type
of bundles.

The Internal Structure of Frameworks
A framework on Mac OS X is a directory with an extension of .framework. When you
open the directory, the first level of its contents looks something like this:

GreatSoftware.framework/
GreatSoftware
Headers/
PrivateHeaders/
Resources/
Versions/

The GreatSoftware item is, in this example, the dynamic shared library. Headers and
PrivateHeaders are subdirectories that store the framework’s public and private
header files. The framework’s resources—items such as interface definition files,
images, sounds and localized strings—go in the Resources subdirectory.

The Versions subdirectory is the only one at this level that is a “real” directory.
GreatSoftware, Headers, PrivateHeaders, and Resources are all symbolic links
(similar to aliases) to the library and directories of the current major version of the
framework. Figure 6-1 illustrates how this linking is done.

106 The Framework as a Library Package
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 6

Frameworks

Figure 6-1 The directory structure of a framework

A framework directory can contain multiple major versions of dynamic shared
libraries (along with their resources). A new major version of a framework is
typically required when the dynamic shared library is not compatible with
programs linked with prior versions of the library. Those applications will not run
with the newest version but will run with an older one, so the older version is
included in the framework bundle. Each version of the framework is contained in a
subdirectory of Versions named, by convention, with letters of the alphabet. For
more on major and minor framework versions, and on versioning in general, see
“Framework Versioning” (page 110).

The contents of the Resources directory of frameworks is similar to that for
new-style bundles. Localized resources are put in subdirectories of Resources. Each
of these subdirectories has a name indicating a language (and possibly a region
where that language is spoken) and an extension of .lproj. More specifically,
resources specific to a region in which a language dialect is spoken should take their
names from the ISO 3166 standard for country codes and the ISO 639 standard for
language codes (with an underbar separating the codes). For example, resources
specific to Canadian French would go in resource directory fr_CA.lproj. But if you
want one directory to hold all resources for all dialects of French, its name would be

Links to contents
of Current

Links to
most recent

C H A P T E R 6

Frameworks

The Framework as a Library Package 107
Preliminary  Apple Computer, Inc. July 2000

French.lproj. The .lproj directories hold strings, images, sounds, and interface
definitions localized to that language and locale. An important way in which
frameworks differ from new-style bundles is that non-localized resources in
frameworks do not go in a Nonlocalized Resources subdirectory of Resources;
instead, they are put in the top level of the Resources directory.

Standard Locations for Frameworks
Important
Much of the information in this section will be out of date as
soon as frameworks are converted to use the new bundle
structure and the new file-system layout.

A system framework is a framework provided by Apple, such as the Application
Kit or the QuickTime framework. The shared library code in system frameworks is
intended for use by all applications on a system. System frameworks are installed
in /System/Library/Frameworks. Third-party frameworks can go in a number of
different file-system locations, depending on certain factors.

� If they are to be used only by a single user, they should be installed in the
Library/Frameworks subdirectory of the user’s home directory.

� If they are to be used by all users of a particular Mac OS X system, they should
be installed in /Local/Library/Frameworks.

� If they are to be used across a local area network, they should be installed in
/Network/Library/Frameworks.

When you build an application or other executable, the compiler looks for imported
frameworks in/System/Library/Frameworks as well as any other location specified to
the compiler. The paths where required frameworks are expected to be installed are
written into the executable itself, along with version information.

When an application is run, the dynamic link editor first tries to link with the
frameworks whose installation paths are written into the executable. If it cannot
find a framework in a specified location (perhaps it has been moved or deleted), it
looks for frameworks in these standard “fallback” locations, in the given order:

~/Library/Frameworks

/Local/Library/Frameworks

/Network/Library/Frameworks

/System/Library/Frameworks

108 Dynamic Shared Libraries
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 6

Frameworks

If the dynamic link editor cannot locate a required framework, it generates a link
edit error and the application will not launch.

Dynamic Shared Libraries

The executable code in a framework bundle is a dynamically linked shared
library—or, simply, a dynamic shared library. This is a library whose code can be
shared by multiple, concurrently running programs. Programs share exactly one
physical copy of the library code and do not require their own copies of that code.
Dynamic shared libraries bring several benefits. They enable more efficient use of
memory and allow developers to fix bugs in library code and test those fixes
without the need to rebuild programs that use those libraries.

Dynamic shared libraries have characteristics that set them apart from statically
linked shared libraries. With dynamic shared libraries, the binding of undefined
symbols in a program is delayed until the execution of that program. In other
words, the dynamic link editor not only attempts to resolve all undefined symbols
at runtime, but attempts to do so only when those symbols are referenced during
program execution. If an undefined symbol is not referenced, the binding is not
needed for that particular execution of the program.

This dynamic behavior derives from the composition of dynamic shared libraries.
The object-code modules from which a dynamic shared library is built retain their
individual boundaries; that is, the code from the source modules is not merged into
a single code base. When a program linked with a dynamic shared library is
launched, the dynamic link editor automatically loads and links modules in the
library, but it links them only as they are needed; in other words, a module is linked
only if a symbol is referenced or a function is invoked that is defined in that module.
If code in a module is not referenced or invoked, the module is not linked. Figure
6-2 illustrates this “lazy linking” behavior. In this example, module a.o is linked in

Note: Although you can create dynamic shared libraries that reside outside a
framework, this is an uncommon approach. Stand-alone dynamic shared
libraries take, by convention, the extension .dylib and typically are installed in
the standard file-system locations for libraries.

C H A P T E R 6

Frameworks

Dynamic Shared Libraries 109
Preliminary  Apple Computer, Inc. July 2000

the program’s main routine when library function a is called; module b.o is linked
when library function b in program function doThat is invoked; module c.o is never
linked because its function is never called.

Figure 6-2 Lazy linking of dynamic shared library modules

As a framework developer, you should design your dynamic shared library with
this as-needed linking of separate modules in mind. Because the dynamic link
editor always attempts to bind unresolved symbols within the same module before
going on to other modules and other libraries, you should ensure that
interdependent code is put in its own module. For example, custom allocation and
deallocation routines should go in the same module. This technique prevents the
wrong symbol definitions from being used. This problem can occur when
definitions of a symbol exist in more than one dynamic shared library and those
other symbol definitions override the correct one.

#include <Boffo/Boffo.h>;
#include "main.h";
#include "doThat.h";

int main() {
a();
doThat(1);
return 0;

}
...

main.c

#include <Boffo/Boffo.h>;
#include "doThat.h";

void doThat (int n) {
b();
if (!n);

c();
}

doThat.c

MyApp.app Boffo.framework

a.o
#include "a.h";

void a() {
...

}

.........
.........

..................

b.o
#include "b.h";

void b() {
...

}

.........
.........

..................

c.o
#include "c.h";

void c() {
...

}

.........
.........

..................

links

links

110 Framework Versioning
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 6

Frameworks

When you create a framework, you must ensure that each symbol is defined only
once in a library. In addition, “common” symbols are not allowed in the library; you
must use a single true definition and precede all other definitions with the extern
keyword.

When you build a program, linking it against a dynamic shared library, the
installation path of the library is recorded in the program. For the system
frameworks supplied by Apple, the path is absolute. For third-party frameworks,
the path is relative to the application package that contains the framework. This
capture of library path improves launching performance for the program. Instead
of having to search the file system, the dynamic link editor goes directly to the
dynamic shared library and links it into the program. This means, obviously, that
for a program to run, any required library must be installed where the recorded
path indicates it can be found or it must be installed in one of the standard
“fallback” locations for frameworks and libraries.

Dynamic shared libraries can have dependencies on other dynamic shared libraries
and these dependencies are recorded in the library executable. When the dynamic
link editor links a program against the first dynamic shared library, it can obtain the
paths of these dependent libraries and link against those as well. Thus the users of
a dynamic shared library do not have to be aware of any dependencies when
linking their programs against it.

Dynamic shared libraries can also be versioned, enabling backward compatibility
and some degree of forward compatibility. See “Framework Versioning” (page 110)
for more on this subject.

Framework Versioning

You can create different versions of frameworks based on the type of changes made
to their dynamic shared libraries. There are two types of versions: major (or
incompatible) and minor (or compatible) versions.

C H A P T E R 6

Frameworks

Framework Versioning 111
Preliminary  Apple Computer, Inc. July 2000

Major Versions
A major version of a framework, also known as an incompatible version, is
incompatible with programs linked with a previous version of the framework’s
dynamic shared library. If any such program tries to run against the newer version
of the framework, it will probably experience runtime errors.

Because all major versions of a framework are typically kept within the framework
bundle, a program that is incompatible with the current version can still run against
the version it is compatible with. The path of each major version of a framework
encodes the version (see “The Internal Structure of Frameworks” (page 105)). For
example, the letter “A” in the path below indicates the major version of a
hypothetical framework:

/System/Library/Frameworks/Boffo.framework/Versions/A/Boffo

When the program is built, this path is recorded in the program executable itself.
When the program is run, the dynamic link editor uses this path to find the
compatible version of the framework’s library. Thus the major versioning scheme
enables backward compatibility of a framework by including all major versions and
recording the major version for each executable to run against.

You should make a new major version of a framework when any of the following
changes renders the dynamic shared library incompatible with programs linked
with previous versions of the library:

� removing public API, such as a class, function, method, or structure

� renaming public API

� changing the data layout of a structure or adding to, changing, or reordering the
instance variables of a class

� adding methods to a C++ class

� changing the programmatic interfaces of public API

An example of the last sort of change would be changing the order of parameters in
a function.

The most recently built major version of a framework is typically made the
“current” version. Unless you specify otherwise, each program you build is linked
against the current version of a library; older programs that you rebuild are
linked against the current version as well. When frameworks are built, the build

112 Framework Versioning
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 6

Frameworks

system automatically generates a network of symbolic links that point to the current
major version of a framework. See “The Internal Structure of Frameworks”
(page 105) for details.

When you create a new major version of a framework, your integrated development
environment takes care of most of the implementation details for you. All you need
to do is specify the major-version designator. A popular convention for this
designator is the letters of the alphabet, with each new version designator
“incremented” from the previous one. However, you can use whatever convention
is suitable for your needs, for example “2.0” or “Two”.

You can also make major incompatible versions of stand-alone dynamic shared
libraries (that is, libraries not contained within a framework bundle). The major
version of this type of library is encoded in the filename itself, for example:

libMyLib.B.dylib

Then, assuming that this library is the most recent major version, the symbolic link
libMyLib.dylib is created to point to it. This creates the current major version of the
dynamic shared library.

Minor Versions
Within a major version of a framework there can be a series of minor, or compatible,
versions. The minor versioning of a framework determines its compatibility with
programs linked with later builds of the framework within the same major version.
The minor versioning scheme thus helps to establish forward compatibility. If
programming interfaces have been introduced to a recent version of a framework,
programs that are built against this framework may not work with earlier minor
versions of the framework. The program might have references to those new APIs
and thus, if it were launched, it would probably crash with link-edit errors. Minor
versioning gives framework developers control over how old a version of the
framework can be used with an executable linked with a more recent version.

The relationship between two version numbers—the current version and the
compatibility version—specifies a framework’s minor-version status in relation to
a particular program. The current version of a framework is a number that is
incremented each time a framework is rebuilt after a compatible change is made to
it (that is, a change not requiring a new major version).

C H A P T E R 6

Frameworks

Framework Versioning 113
Preliminary  Apple Computer, Inc. July 2000

The type of change introduced in a framework affects the value of the second minor
version number, the compatibility version. If the change is merely a bug fix or an
enhancement that does not affect any public API, the compatibility version is left
unchanged from its current value. If, however, you have added classes, methods,
functions, structures, or any other public API to the framework, the compatibility
version number should be set to the same value as the current version number.

Important
The addition of instance variables to Objective-C or C++
classes or the addition of C++ methods constitutes a major
incompatible change, not a minor compatible change.

When a framework is built or rebuilt, its current version number and its
compatibility version number are recorded in the framework’s dynamic shared
library. When you build a program that links against this framework, these same
numbers are encoded in the program executable, along with the path of the
framework (which contains the major version designator). When you try to run the
program, the dynamic link editor compares the program’s compatibility version
number and the framework’s compatibility version number; if the program’s
compatibility version is greater than the framework’s compatibility version, the
program does not launch.

The minor versioning scheme applies as much to stand-alone dynamic shared
libraries as to frameworks.

Versioning Summary and Guidelines
In Mac OS X there are two types of versions for frameworks and dynamic shared
libraries:

� Major incompatible version—Designates a framework that is incompatible with
programs linked with a previous version of the framework’s dynamic shared
library (backward compatibility).

� Minor compatible version—Designates a framework that is compatible with
programs linked with later builds of the framework within the same major
version (forward compatibility).

114 Framework Versioning
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 6

Frameworks

Table 6-1 (page 114) summarizes the salient facts about each type of version.

The otool command-line program displays output that can give you an idea of how
versioning information is recorded in a program executable. To use this program,
change directories to any Mac OS X application and enter the following in a
Terminal shell: otool -L appName where appName is the name of the application.

Guidelines for Major Versioning

If you don’t change the framework’s major version number when you need to,
programs linked with it will fail in unpredictable ways. If you change the major
version number and you don't need to, you're cluttering up the system with
unnecessary frameworks.

Table 6-1 Summary of framework versioning

Type of version When required What happens

Major/incompatible
(backward compatible)

API changes (such as renaming
functions);
removing API; adding or
reordering instance variables;
adding C++ methods.

Major version designator
changed; new designator is
reflected in framework path.
Path of dynamic shared library
recorded in programs built with
framework.

Minor/compatible
(forward compatible)

Adding new function, method,
class, structure, and so forth.

Current (minor) version number
incremented; compatibility
version set to the same value as
current (minor) version. Values
recorded in programs built with
this framework.

None Bug fixes, enhancements not
affecting programmatic
interfaces

Current (minor) version
incremented; compatibility
version remains the same. Values
are recorded in programs built
with this framework.

C H A P T E R 6

Frameworks

Framework Versioning 115
Preliminary  Apple Computer, Inc. July 2000

The main trick is to avoid having to change the version number in the first place.
Here are some ways to do this:

� Pad classes and structures with reserved fields. Whenever you add an instance
variable to a public class, you must change the major version number because
subclasses depend on a superclass's size. However, you can pad a class and a
structure by defining unused (“reserved”) instance variables and fields. Then, if
you need to add instance variables to the class, you can instead define a whole
new class containing the storage you need and have your reserved instance
variable point to it.

Keep in mind that padding the instance variables of frequently instantiated
classes or the fields of frequently allocated structures has a cost in memory.

� Don’t publish API unless you want your users to use it. You can freely change
private API because you can be sure no programs are using it. Declare any API
in danger of changing in a private header.

� Don’t delete things. If a method or function no longer has any useful work to
perform, leave it in the API for compatibility purposes. Make sure it returns
some reasonable value. Even if you add additional arguments to a method or
function, leave the old form around if at all possible.

� Remember that if you add API rather than change or delete it, you don't have to
change the major version number because the old API still exists. The exception
to this rule is instance variables. (You do have to change the compatibility
version number, however.)

If You Do, Don't Clean The Project

When you do a “make clean” with your integrated development environment, you
delete the entire framework bundle in the project directory, which means it deletes
the old binaries in addition to the current binary. The subsequent build creates only
the current version. You have no way of retrieving the earlier versions. If you must
perform a make clean, you’ll need to create multiple copies of the project: one that
builds the current version and one for each of the previous versions.

117
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 7

7 Umbrella Frameworks

An umbrella framework is a public system framework that includes and links with
constituent subframeworks and other public frameworks provided by Apple. A
subframework is a public but restricted system framework that typically packages
a specific Apple technology such as Open Transport or QuickDraw.

As the word “umbrella” implies, an umbrella framework encompasses all the
technologies and APIs that define an application environment or a layer of system
software. It provides a layer of abstraction between what outside developers link
their programs with and what Apple engineering provides as implementation. The
internal composition of subframeworks is an implementation detail subject to
change. Apple has put mechanisms in place to discourage developers from directly
including and linking with subframeworks.

Umbrella frameworks are not recommended for third-party developers. Apple
instead recommends that external developers package their frameworks in
applications. See the chapter “Application Packaging” (page 91) for more
information.

This chapter describes the various kinds of private and public frameworks,
defines umbrella frameworks and subframeworks, illustrates the internal structure
of umbrella frameworks, and offers guidelines for linking with umbrella
frameworks.

118 Kinds of Frameworks
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 7

Umbrella Frameworks

Kinds of Frameworks

The major application environments of Mac OS X as well as the layers of system
software—the Application Services, Core Services, and kernel environment
layers—are packaged as umbrella frameworks. The definition of this term depends
on a few concepts that require several stages of explanation.

First, what is a framework? A framework is a hierarchically structured directory
that holds a dynamic shared library along with supporting resources. These
resources include header files, reference documentation, image files, and localized
strings. The chapter “Frameworks” (page 103) describes frameworks in detail. A
frameworks is also a type of bundle, but it differs in significant ways from other
types of bundles, such as applications and plug-ins; see the chapter “Bundles”
(page 75) for detailed information on bundles.

Second, frameworks can be one of several types, or “flavors.” To begin with,
frameworks are either private or public. Private frameworks are used only for
internal development and their APIs are not exposed to customers. By convention,
they go in the PrivateFrameworks folder of the system’s, network’s, or user’s Library
folder; however, if frameworks are closely bound to an application, they typically
go inside the application package (see “Application Packaging” (page 91)). Public
frameworks are shipped to customers and their APIs are exposed through their
header files. By convention, they are installed in the Frameworks folder in the
appropriate Library location.

Third, the public frameworks that Apple ships with Mac OS X come in three
varieties: the simple kind of public framework, the subframework, and the
umbrella framework. These frameworks are installed on the installation hard disk
in /System/Library/Frameworks. Public frameworks in this folder may be of the
simple sort—that is, neither umbrella framework or subframework—only if they
have been widely used in prior versions of the operating system, such as Mac OS X
Server. The Cocoa application environment’s Foundation and Application Kit
frameworks fall into this category.

C H A P T E R 7

Umbrella Frameworks

The Purpose of Umbrella Frameworks 119
Preliminary  Apple Computer, Inc. July 2000

The Purpose of Umbrella Frameworks

An umbrella framework simply includes and links with constituent subframeworks
and other public frameworks. An umbrella framework encompasses all the
technologies and APIs that define an application environment or a layer of system
software. It provides a layer of abstraction between what outside developers link
their programs with and what Apple engineering provides as implementation.

A subframework is structurally a public framework that packages a specific Apple
technology, such as Apple events or Quartz or Open Transport. However, a
subframework is public with restrictions. Although the APIs of subframeworks are
public, Apple has put mechanisms in place to prevent developers from linking
directly with subframeworks (see “Restrictions on Subframework Linking”
(page 124)). A subframework always resides in an umbrella framework installed in
/System/Library/Frameworks, and within this umbrella framework its header files
are exposed (see “The Structure of an Umbrella Framework” (page 122)).

Some umbrella frameworks include other umbrella frameworks; this is particularly
this case with the umbrella frameworks for the Carbon and Cocoa application
environments. For example, both Carbon and Cocoa (directly or indirectly) import
and link with the Core Services umbrella framework (CoreServices.framework).
This umbrella framework, in turn, imports and links with subframeworks such as
Core Foundation and Open Transport.

120 The Purpose of Umbrella Frameworks
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 7

Umbrella Frameworks

Figure 7-1 Relationship between framework and subframework

The exact composition of the subframeworks within an umbrella framework is an
internal implementation detail subject to change. But by providing a level of
indirection, umbrella frameworks insulate developers from these changes. Apple
might restructure the subframeworks within an umbrella framework and might
add, rename, or remove the header files within subframeworks. But these changes
should not affect programs that link with the umbrella framework.

The value of an umbrella framework is that, by linking with it and only it, you can
be assured that you have access to all the APIs necessary for programming in a
particular application environment or layer of system software. Umbrella
frameworks hide the complex cross-dependencies among the many different pieces
of system software. Thus you do not need to know what set of frameworks and
libraries you must import to accomplish a particular task. Umbrella frameworks
also make faster builds possible because a precompiled header is included along
with any umbrella header file or framework header file.

Subframeworks

...

Subframeworks

...

Carbon application

#includes

Umbrella framework

dynamically loads

Core Foundation

Open Transport

Subframework1

Subframework2

Core Services Umbrella framework

Carbon

C H A P T E R 7

Umbrella Frameworks

Linking and Including Guideline 121
Preliminary  Apple Computer, Inc. July 2000

Linking and Including Guideline

For Mac OS X software developers the guideline for including header files and
linking with system software is fairly straightforward: Include only the umbrella
header file and link only with the umbrella framework appropriate to the program
you are creating.

An umbrella header file includes the framework header files of its subframeworks.
A framework header file (such as in a subframework) includes all the header files
of the framework. You should never directly include the header files from
subframeworks or link directly with them (and, in fact, you are prevented from
doing so).

The general syntax of the command for including framework header files in
Mac OS X is

#include <Framework/Header.h>

Where Framework is the name of the framework and Header is the name of a header
file.

For umbrella frameworks Apple only supports the convention where the name of
the umbrella header file matches the framework name. The #include (or #import)
command is appropriately shortened to represent this convention. Thus, to include
the Carbon umbrella framework, you would give the following #include command:

#include <Carbon.h>

This convention brings with it some benefits. It permits greater portability of
Carbon source code (where this single-name convention is the norm). And it results
in faster compilations because the compiler (gcc) automatically uses the
precompiled header that matches the umbrella and framework header files.

Note: For Objective-C projects, the #import directive may be used instead of
#include; this directive is identical to #include, except that it makes sure that the
same file is never included more than once.

122 The Structure of an Umbrella Framework
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 7

Umbrella Frameworks

See “The Structure of an Umbrella Framework” (page 122) for more about umbrella
header files.

Do not worry about bloating your program’s memory footprint by linking it with
an umbrella framework and including its (potentially) dozens of header files.
Because the executable code of a framework is a dynamic shared library, a
subframework’s code is loaded into memory only when one of its functions or
methods is first called. If your program does not use a subframework, it is not
loaded. See “Dynamic Shared Libraries” (page 108) in the chapter “Frameworks”
for more on this subject.

The Structure of an Umbrella Framework

Two things determine the structure of an umbrella framework. The first is the
manner in which it includes header files. The second is the manner in which an
umbrella framework, as a bundle directory, organizes its subframeworks.

The #include examples in the previous section suggests how umbrella header files
and framework header files are used to accomplish the level of abstraction afforded
by umbrella frameworks. To reiterate, the general syntax of the #include command
for including framework header files is

#include <Framework/Header.h>

The convention for including umbrella header files is the following:

#include <Framework.h>

In this convention, the framework and the umbrella header file have the same name.

An umbrella header file includes the framework header files of its subframeworks.
For example, the umbrella header for the Core Services umbrella framework,
CoreServices.h, has the following contents:

#include <CoreFoundation.h>
#include <OT.h>
#include ...

C H A P T E R 7

Umbrella Frameworks

The Structure of an Umbrella Framework 123
Preliminary  Apple Computer, Inc. July 2000

The framework header file includes all the header files defining the public interface
of a particular technology. CoreFoundation.h, for example, is the framework header
for the Core Foundation subframework (CoreFoundation.framework):

#include <CoreFoundation.h>
#include <CoreFoundation/CFString.h>
#include <CoreFoundation/CFPlugin.h>
#include ...

Physically, umbrella frameworks contain their subframeworks using a structure
constructed from subdirectories and symbolic links (a mechanism similar to
aliases). Listing 7-1 depicts a hypothetical framework. (Symbolic links in this
example are items followed by an “at” sign (@); they include the referenced path.)

Listing 7-1 Structure of an umbrella framework

Umbrella.framework/
Headers@ -> Versions/Current/Headers/
PrivateHeaders - > Versions/Current/PrivateHeaders/
Resources@ -> Versions/Current/Resources/
Umbrella@ -> Versions/Current/Umbrella
Versions/
Frameworks/

SubFW1.framework/
SubFW1@ -> Versions/Current/SubFW1
Headers@ -> Versions/Current/Headers/
PrivateHeaders@ -> /Versions/Current/PrivateHeaders/
Resources@ -> Versions/Current/Resources/
Versions/

SubFW2.framework/
SubFW2@ -> Versions/Current/SubFW2
Headers@ -> Versions/Current/Headers/
PrivateHeaders@ -> /Versions/Current/PrivateHeaders/
Resources@ -> Versions/Current/Resources/
Versions/

124 Restrictions on Subframework Linking
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 7

Umbrella Frameworks

Each subframework of the umbrella framework goes in the Frameworks directory.
The Headers directory referenced by the umbrella framework’s symbolic link
contains the umbrella header file (Umbrella.h in the above example). The umbrella
header file includes a #pragma command that tells the compiler where the
subframeworks are located.

There are a couple of things to note about the structure of frameworks in general:

� The PrivateHeaders directory contains header files used in internal development
and is not shipped to customers.

� Aside from the umbrella framework’s Frameworks directory, the Versions
subdirectory of a framework is the only “real” one—that is, the only directory at
that level that isn’t a symbolic link. It contains the major versions of a
framework. The Current directory is a symbolic link that typically points to the
most recent version. For more on the general structure of frameworks, see “The
Framework as a Library Package” (page 104) in the chapter “Frameworks.”

Restrictions on Subframework Linking

Mac OS X includes two mechanisms for ensuring that developers link only with
umbrella frameworks. One mechanism is triggered when you attempt to include
subframework header files. The other mechanism prevents linking with
subframeworks.

If, as an external developer, you try to link with a subframework, the linker causes
the link to fail and displays a message explaining why. For example, if you try to
link directly with the Open Transport framework (OT.framework), the link fails and
the linker prints the following message: “OT.framework is a subframework. Link
against the umbrella framework CoreServices.framework instead.”

If you try to include a header file that is in a subframework, you get a compile-time
error message. The umbrella header files and the subframework header files
contain preprocessor variables and checks to guard against the inclusion of
subframework header files. If you compile your project with an improper #include
statement, the compiler generates an error message.

How the File System Is Organized 125
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 8

8 The File System

From an architectural perspective, Mac OS X implements multiple file systems,
most importantly Mac OS Extended (HFS+), Mac OS Standard (HFS), UFS, ISO9660,
NFS, and AFP. But from a user perspective, the file systems are monolithic; when
users copy, move, or drag files and folders, there is (or seems to be) one file system.

This chapter looks at file systems from both perspectives and discusses topics that
are of interest to software developers. First it describes the standard directory
layout on Mac OS X—where things like applications, documents, frameworks, and
resources go in a multiuser, networked computing environment. Then it describes
differences and issues of interoperability between the various file systems,
particularly the dominant ones: HFS+ and UFS. It also explains the implementation
of HFS resource forks and the policies related to this implementation.

How the File System Is Organized

Important
The information in this section applies to the Public Beta
version of Mac OS X. The directory layout of Public Beta is
an interim layout. Some details of the file-system
organization will change in subsequent versions of
Mac OS X.

In Mac OS X almost every file in the file system has its proper place—a standard
directory location for files of that type. For users, this doesn’t mean they must put
their applications and application resources in the recommended locations.
Applications, after all, are packaged so they can be self-sufficient wherever they’re
installed. But if users do not put certain things where system software expects them,

126 How the File System Is Organized
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 8

The File System

they might lose out. For example, the Finder first populates an application database
by looking in the standard locations for applications (“Collecting Application
Information” (page 148)). As a result, a document belonging to an application that
is not in one of those locations might not immediately open when double-clicked.

Before exploring the rationale behind the file-system organization, let’s consider
what the Finder displays at the top level of the file system. Listing 8-1 illustrates a
hypothetical installation.

Listing 8-1 The top level of the Mac OS X file system

/Hard Disk/
/Network/
/OtherDevice/

The layout of a file system is often represented as a hierarchical tree structure that
begins at a “root.” At the root of a typical Mac OS X file system (root indicated by
an initial /) are

� /Hard Disk—The volume from which the operating system boots and on which
system software and resources are installed. This volume is typically a hard disk
formatted to be a Mac OS Extended (HFS+) volume. Users can change the name
of this volume.

� /Network—The root of the local area network, as mounted on the user’s system.
If there is no network—that is, the machine is “stand-alone”—this does not
appear.

� /OtherDevice—Represents externally connected devices or internal devices that
are not the boot volume. These could be devices such as Zip drives, CD-ROM
drives, or digital cameras. (“OtherDevice” is only representative; the actual
name of each connected device will be different.)

At the root level, but hidden from users by the Finder, are the standard BSD
directories such as /usr, /bin, and /etc.

So, at the uppermost level, the organization of file systems on a Mac OS X computer
is by hard (boot) disk, network, and external devices and nonboot volumes. But the
full organization goes deeper than that.

C H A P T E R 8

The File System

How the File System Is Organized 127
Preliminary  Apple Computer, Inc. July 2000

File-System Domains
The directories of the Mac OS X file system are arranged so that resources local to
the user’s computer are segregated from those on the network, and, on a computer,
system resources are segregated from those under the control of the user or system
administrator. Applications, documents, fonts, and other resources should go in
one of several file-system domains. A domain is an area of the file system
segregated from other domains and with structural elements identical to other
domains.

Which domain an item goes in depends on how accessible you want that item to be.
There are four domains:

� User. The domain specific to the user who is logged into the system. This
domain is defined by the user’s home directory, which can either be on the boot
volume (/Hard Disk/) or on the network. The user has complete control of what
goes into this domain.

� Local. The domain for applications, documents, and resources shared among all
users of a particular computer and not needed for the computer to run. Users
with administrator privleges can add, remove, and modify items in this domain.
This domain is located on the local boot (and root) volume.

� Network. The domain for applications, documents, and resources shared
among all users of a local area network. Items in this domain are typically
located on network file servers and are under the control of a network
administrator.

� System. The domain for system software installed by Apple, also on the boot
(and root) volume. The system domain contains the software the system needs
to run. Users cannot add to, remove from, or alter the contents of this domain.

The domain a program or resource is placed in defines the scope of applicability or
accessibility for that program or resource. For example, if a user installs a custom
font in the standard location for fonts in his home directory, that font is available to
his documents only. If an administrator installs the same font in the network
location for fonts, the font is available to everyone on the network.

The replication of directory structure and the names of directories themselves
within each domain achieves a regularity that various system routines use when
they look for a particular item. This regularity of structure and naming forms the
basis of several conventions used by system software to locate applications,
frameworks, fonts, help, preferences, and other resources; without it, many system

128 How the File System Is Organized
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 8

The File System

services might not work. When system software searches for something, it generally
searches the domains in the order given above: first user domain, then local domain,
then network domain, and finally system domain.

Your code should never explictly specify the paths to a location within a file-system
domain. Those paths could change in the future. Instead, always use the constants
provided by the public APIs Apple provides for this purpose. See “Searching
Within the File-System Domains” (page 138) for more on searching for items within
the domains.

The System and Local Domains
The applications and resources in the system and local domains are available to all
users of a computer system. The difference between them is that the system domain
(with rare exceptions) is exclusive; users cannot install their resources in the system
domain or modify its contents.

Listing 8-2 shows the directory layout for not only the system and local domains,
but the file-system location of the Classic application environment.

Listing 8-2 Directory layout for system and local domains

/Hard Disk/
MacOS9/
Applications/

Extras/
Utiltiies/

Library/
System/
Users/

The software for the Classic environment is physically stored in the MacOS9 folder.
MacOS9 contains the System Folder and all other folders commonly found on a Mac
OS 9 system. It is outside the file-system domain organization because it is not
searched for resources. It does not have to be on a separate volume (hard disk or
partition). If you install Mac OS X onto an HFS+ volume that already contains Mac
OS 9, the installer creates the MacOS9 folder and moves the previous Mac OS 9
contents to the MacOS9 folder.

C H A P T E R 8

The File System

How the File System Is Organized 129
Preliminary  Apple Computer, Inc. July 2000

The base installation packages installs the folders of the system and local domains.
Table 8-1 describes the properties and contents of these folders.

Table 8-1 Folders of the system and local domains

Location Description

/Hard Disk/Applications Combines the system and local domains for
applications that are available to all users of the same
computer. It contains the applications shipped by
Apple plus third-party applications. The contents of
this folder can be modified by an administrator of
the local system (which is any user in the “admin”
group). The subfolder Utilities contains
administrative and utility applications; the subfolder
Extras contains demonstration and miscellaneous
applications.

/Hard Disk/Library The part of the local domain containing resources—
except applications—available to all users of the
machine. These resources, contributed by both Apple
and third parties, are not essential to running the
operating system. They include fonts, keyboards,
color pickers, plug-ins, and user documentation
(including Apple’s). The contents of this folder can
be modified by anyone with “admin” group
privileges. For more on the Library folder, see “The
Library Folder” (page 134).

/Hard Disk/System The part of the system domain containing the
Apple-provided files essential to a bootable system.
It includes resources such as system frameworks and
fonts. Only the “root” user can modify the contents
of this directory; users with “admin” group
priviledges cannot modify it. Never try to change
what is in this directory because doing so could
render the system unbootable. Note that
Apple-provided applications and documentation are
not put here.

/Hard Disk/Users See the next section, “The User Domain.”

130 How the File System Is Organized
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 8

The File System

The User Domain
Each user of a Mac OS X computer system must have an account on that system or
on a local area network to which that system is connected. An administrator sets up
each user account on a local system or on a network. To access his or her account, a
user must log in by entering a user name and a password in the login window.

A user’s account grants him or her an area in the file system to store programs,
resources, and documents. The topmost folder in this area is call the user’s home
directory, which is conventionally named to identify the user. A user’s account also
gives the user certain resources within the home directory, and it protects files in
that directory from outside interference by a set of default file permissions (which
the user is free to change). The user domain references the “current” (logged-in)
user’s home directory.

The user domain makes a customized working environment possible for each user.
When users log in, the Finder restores their working environment to what it was
were when they last logged off. Applications and system software execute with the
set of preferences selected by the user; network, Internet, and email settings are
restored; font sets and ColorSync profiles are also restored.

Mac OS X uses the convention of a ~ (tilde) character to indicate a user’s home
directory; it can be used to specify (by itself) the current user’s home directory and
to specify any other user’s home directory. Table 8-2 (page 130) illustrates this.

Table 8-2 Uses of tilde to indicate locations in home directories

~ Top level of current user’s home direcotry

~/Library/Fonts Where fonts are stored in current user’s home directory

~Steve Top level of user Steve’s home directory

C H A P T E R 8

The File System

How the File System Is Organized 131
Preliminary  Apple Computer, Inc. July 2000

Listing 8-3 shows the directory layout of a typical user domain local to a computer
system.

Listing 8-3 Directory layout of user domain local to a computer

/Hard Disk/
MacOS9/
MacOSX/
Applications/
Users/

Public/
Steve/

Documents/
Library/
Steve Public/

When a user account is created, an Applications folder is not automatically added
to the home directory. However, users can create an Applications folder and put
their own applications in it. The system automatically searches for applications in
that location.

Location Description

/Hard Disk/
Users/Public

A directory whose contents are shareable by any user of
the local computer system. Any user of this computer can
write documents to, retrieve documents from, and read
documents in this directory. Although this folder is not
really associated with the user domain, it provides a
convenient means for users to exchange documents and
other files.

/Hard Disk/
Users/<username>

The home directory of a particular user (<username>) on
this computer system. The system provides each home
directory with its own Documents, Library , and Public
folders. For more on the Library folder, see “The Library
Folder” (page 134).

132 How the File System Is Organized
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 8

The File System

Listing 8-4 shows the directory layout of a typical home directory on a local area
network.

Listing 8-4 Directory layout of user home directory on a local area network

/Network/
...
Public/
Users/

Steve/
Documents/
Library/
Steve Public/

The same information about home directories local to a computer system applies to
home directories on a network. The Users folder in this example is just one way an
administrator can organize user accounts on a network; other schemes are possible.

The /Network subfolders other than Users are part of the network domain . See “The
Network Domain” for further information.

The Network Domain
The network domain defines the file-system scope of applications, documents, and
resources available to all users of a local area network (including AppleShare and
Web servers). The exact composition of the network domain depends on
institutional or corporate policy; the implementation of the network domain is a
responsibility of the network administrator.

C H A P T E R 8

The File System

How the File System Is Organized 133
Preliminary  Apple Computer, Inc. July 2000

Listing 8-5 shows a typical directory layout for the network domain.

Listing 8-5 Directly layout of network domain

/Network/
Applications/
Library/
Servers/
Connected Servers/
Public/

Location Description

/Network/Applications Applications that can be run by all users on the local
area network.

/Network/Library Resources—such as plug-ins, sound files,
documentation, frameworks, colors, and fonts—
available to all users of a local area network. For
more on the Library folder, see “The Library Folder”
(page 134).

/Network/Servers Mount points for NFS file servers that make up the
local area network.

/Network/Connected
Servers

Any AppleShare or Web servers (HTTP and
WebDAV) mounted through the Desktop’s
Go>Connect To Server command. These volumes
and servers are initially presented in a new Finder
window but are also retained in this location.
However, they do not persist across login sessions.

/Network/Public A folder whose contents are shareable by all users of
the local area network. See “The User Domain”
(page 130) for the description of the local-user’s
Public folder.

134 How the File System Is Organized
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 8

The File System

The Library Folder
The Library folder is replicated in each file-system domain of Mac OS X. The
Library folder contains the resources used by applications but not the applications
themselves. The Library folder has a common set of subfolders, some of which must
be there and others that, by convention, should be there.

Some system routines expect certain subfolders of Library; among these are the
routines for reading and writing preferences and those that dynamically link with
frameworks. However, the search algorithm used by some system software does
not proceed beyond the Library folder itself. What this means is that if your
application is looking for anything in a particular folder of Library, it usually
should know the name of that folder in advance.

Listing 8-6 shows the possible folders that can appear in the Library folder; many of
these subfolders are more likely to appear in the local or network domains than in
the Library folder in a user’s home directory.

Listing 8-6 Possible subfolders of the Library folder

Library/
Application Support/
BrowserPlugins/
Documentation/
Extensions/

ColorPickers/
ColorSync Profiles/
Keyboards/
PPDs/
Services/
Voices/

Fonts/
Frameworks/
Preferences/
PrinterProfiles/
Scripting/

Scripts/
Scripting Additions/

C H A P T E R 8

The File System

How the File System Is Organized 135
Preliminary  Apple Computer, Inc. July 2000

SherlockPlugins/
Sounds/
Web Server/

Folder Description

Application Support Third-party plug-ins, helper applications, templates
and other resources for a specific application in a
domain. By convention, these items should be put in a
subfolder named according to the application. Thus
third-party resources for the application MyApp
would go in Application Support/MyApp. Note that
resources created by the developer of an application
should go in the application package itself. See
“Application Packaging” (page 91) for more
information.

BrowserPlugins Plug-ins for Web browsers

Documentation Documentation files and Apple Help packages
intended for the users and administrators of the
computer. In the local domain, it includes the help
packages shipped by Apple (excluding developer
documentation).

Extensions Various binaries and resources extending the
capabilities of the system. See Table 8-3 (page 136) for
details.

Fonts Font files for both display and printing

Frameworks Frameworks and shared libraries

Preferences User preferences. See the “The Preferences System”
(page 166) in the chapter “Software Configuration.”

Scripting Scripts and scripting resources that extend the
capabilities of AppleScript. Subfolders include
Scripts and Scripting Additions.

SherlockPlugins Plug-ins for extending the capabilities of Sherlock.

Sounds Sound files (both .snd and .aiff types)

Web Server Where the Web server resides, including the
document root.

136 How the File System Is Organized
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 8

The File System

The Extension subfolder of the Library folder itself contains many prescribed
folders. Table 8-3 list these subfolders

The Developer Folder
You install the applications, tools, documentation, and other resources for
developing software for Mac OS X as an optional package. Most of these items are
installed in the Developer folder, which is immediately under the boot volume
(/Hard Disk/).

Listing 8-7 shows the contents of the Developer folder.

Listing 8-7 The contents of the Developer folder

/Hard Disk/
...
Developer/

Applications/
Documentation/
Examples/
Java/
Makefiles/

Table 8-3 Possible folders of the Library/Extensions folder

Folder Description

ColorPickers A resource for picking colors according to certain
model, such as the HLS (Hue Angle, Saturation,
Lightness) picker or the Crayon picker

ColorSync Profiles ColorSync profiles

Keyboards Keyboard definitions

PPD Printer definitions

Services Loadable application services such as spell-checking

Speech Definitions of voices with certain characteristics

C H A P T E R 8

The File System

How the File System Is Organized 137
Preliminary  Apple Computer, Inc. July 2000

Palettes/
PBBundles/
ProjectTypes/
Tools/

Project Builder defines a set of makefile variables that projects should use when
specifying locations within file-system domains. They should use these variables
instead of hard-coding directory paths because those locations are subject to
change. Table 8-4 (page 137) lists these variables .

/Developer Folder Description

Applications Applications used to manage software projects and build
projects (Project Builder), to create user interfaces (Interface
Builder), and to performance-tune programs.

Documentation Developer documentation.

Examples Example projects organized by general type (Carbon, Java,
and so on).

Java Files needed for Java bridging in the Cocoa application
environment.

Makefiles Makefiles and jamfiles for building and converting projects.

Palettes Apple-supplied Interface Builder palettes.

PBBundles Loadable bundles used by Project Builder.

ProjectTypes Definitions of project types used by Project Bulder.

Tools Command-line development tools, including those for
creating and manipulating HFS resource forks.

Table 8-4 Project Builder makefile variables for file-system domains

Variable Directory location

SYSTEM_APPS_DIR /Applications

SYSTEM_ADMIN_APPS_DIR /Applications/Utilities

SYSTEM_DEMOS_DIR /Applications/Extras

138 How the File System Is Organized
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 8

The File System

Searching Within the File-System Domains
Mac OS X includes two public programmatic interfaces you can use to search for
resources, plug-ins, and other items within specific directory locations of specific
(or all) domains. One of these APIs—the FindFolder function of the Folder
Manager—is for Carbon programs. The other API—the functions and constants
defined in NSSystemDirectories.h in the System framework—is for any other type
of program.

Both APIs help you search through all file-system domains for a particular item. By
convention, searches typically begin with the most specific domain and end with
the most general. This domain order is the following:

1. User

2. Local

3. Network

4. System

Most system software follows this order when it searches for items through all
file-system domains. However, you may search in any domain order that is
appropriate to your application’s needs.

SYSTEM_DEVELOPER_DIR /Developer

SYSTEM_DEVELOPER_APPS_DIR /Developer/Applications

SYSTEM_DOCUMENTATION_DIR /Library/Documentation

LOCAL_ADMIN_APPS_DIR /Applications/Utilities

LOCAL_APPS_DIR /Applications

LOCAL_DEVELOPER_DIR /Library/Developer

LOCAL_LIBRARY_DIR /Library

USER_APPS_DIR $(HOME)/Applications

USER_LIBRARY_DIR $(HOME)/Library

Table 8-4 Project Builder makefile variables for file-system domains (continued)

Variable Directory location

C H A P T E R 8

The File System

Differences Between HFS+ and UFS 139
Preliminary  Apple Computer, Inc. July 2000

Differences Between HFS+ and UFS

There are many significant differences between the two major file systems on Mac
OS X: HFS+ and UFS. In many cases, these differences have some bearing on
programs developed for Mac OS X. The following list summarizes the major
differences between these file systems (many of these statments apply to HFS as
well as HFS+):

� Case sensitivity. UFS is sensitive to case; although HFS+ is case-insensitive it is
case-preserving.

� Multiple forks. HFS+ supports multiple forks (and additional metadata)
whereas UFS supports only a single fork. (Carbon simulates multiple forks on
file systems such as UFS which do support them.)

� Path separators. HFS+ uses colons as path separators whereas UFS follows the
convention of forward slashes. The system translates between these separators.

� Modification dates. HFS+ supports both creation and modification dates as file
metadata; UFS supports modification dates but not creation dates. If you copy a
file with a command that understands modification dates but not creation dates,
the command might reset the modification data as it creates a new file for the
copy. Because of this behavior, it is possible to have a file with a creation date
earlier than its modification date.

� Sparse files and zero filling. UFS supports sparse files, which a way for the file
system to store the data in files without storing unused space allocated for those
files. HFS+ does not support sparse files and, in fact, zero-fills all bytes allocated
for a file until end-of-file.

� Lightweight references to file-system items. See “Aliases and Symbolic Links”
(page 140).

In addition, the APIs historically associated with each file system sometimes have
different behaviors. For example, a program using BSD (or BSD-derived) APIs can
delete a file that is open; on the other hand, a Carbon program may only delete a file
that is closed.

140 Aliases and Symbolic Links
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 8

The File System

Aliases and Symbolic Links

Aliases and symbolic links are lightweight references to files and folders. Aliases are
associated with Mac OS Standard (HFS) and Mac OS Extended (HFS+) volume
formats; symbolic links are a feature of UFS file systems. Both aliases and symbolic
links allow multiple references to files and folders without requiring multiple
copies of these items. However, they are implemented differently, which causes
them to behave differently when a referenced file or folder moves or changes.

Symbolic links are implemented as a reference to a path in the file system. The UFS
file system tries to resolve a symbolic link by parsing the path information. Thus if
you move a file that a symbolic link references to a different location in the file
system, the symbolic link breaks (see Figure 8-1). Therefore a symbolic link is a
fragile reference to a specific file or folder.

Figure 8-1 The fragility of symbolic links

Despite this fragility, it is useful sometimes to have a reference to a file known to
always exist at a specific path in the file system, thus assigning importance to the
file at that location. For these cases a symbolic link works very well; even if the file
at the specified location is replaced with a new file, the symbolic link still refers to
the file at that location in the file system. For example, the frameworks of Mac OS X
use symbolic links extensively to implement their versioning system.

/

A

/A

B

/

C

/A

B

?

C H A P T E R 8

The File System

Resource Forks 141
Preliminary  Apple Computer, Inc. July 2000

By contrast, Mac OS X implements aliases by identifying the volume and location
on disk of a referenced file or folder. Each such reference has a unique identity. As
a result, aliases always refer to the same file or folder regardless of where it's moved
in the file system—as long as the file or folder stays on the same volume. This
capability makes aliases a good way to refer to files or applications that might move
around on a given volume.

However, aliases are not a good way to refer to a file or folder at a specific location
in the file system. When you replace a file at a given location with a new version of
the file, the alias continues to refer to the old version of the file. Also, aliases break
when a referenced file is copied from one volume to another. And if the application
you use to edit a referenced file writes out a new copy of the file (instead of just
updating the old file), any alias to the original file is broken.

Resource Forks

Before Mac OS X and Carbon, application resources were put in the resource fork of
the application executable. That policy has now changed. In Mac OS X and for
Carbon applications generally, resources should be put in the data fork of a separate
resource file, not the resource fork of the executable.

The Carbon APIs now read and process resources in a resource file’s data fork as if
they were in the resource fork. (In fact, the system routines that read resources—
which are primarily Resource Manager functions—now do most of the work for
you.) If application resources are stored in the resource fork, you can use these APIs
to access them, but now you must explictly specify the resource fork in order for this
to happen.

The primary reason for moving application resources out of resource forks is to
enable applications to be seamlessly moved around different file systems without
loss of their resources; this would include methods such as BSD commands, FTP,
email, and Windows and DOS copy commands. Most other computing
environments, including the Web, recognize single-fork files only, and tend to lop
off the resource fork of HFS and HFS+ files. Moreover, moving resources into the
data fork eliminates the need for compressing applications to preserve resource
information (using Stuffit archives, bin-hex, or similar means).

142 Resource Forks
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 8

The File System

Even though Apple now recommends storing resources in the data fork of a
resource file, this—by itself—is an incomplete solution. For example, application
resources stored in a single file are much harder to localize. In addition to moving
application resources out of resource forks, you should use the application
packaging scheme (see “Application Packaging” (page 91)) and do the following:

� In the localized (or nonlocalized) areas of the application bundle, put a file that
contains the application resources for that locale (or for all locales). By
convention, this file has an extension of .rsrc, although it can have any
extension or no extension.

� Instead of putting all localized resources in a single .rsrc file, put each resource
(or groups of related resources) in its own file.

C H A P T E R 8

The File System

Resource Forks 143
Preliminary  Apple Computer, Inc. July 2000

Figure 8-2 depicts how resources can be stored in Mac OS X as opposed to the way
they are stored on earlier Mac OS systems.

Figure 8-2 Resources in the data fork

1000110100010111011000101101
0001010011010001011100101110
1010001010010010001010100010

MyApp

data fork

resource fork

MyApp.app/
 Contents/
 Info.plist
 PkgInfo
 MacOS/
 MyApp
 Resources/
 MyApp.rsrc
 AnImage.pict
 AnIcon.icns
 English.lproj/
 Localized.rsrc
 MyApp.strings
 ASound.snd

Mac OS 9 (single-file executable)

Mac OS X (application package)

MyApp.rsrc

data

resource empty

AnImage.pict

data

resource empty

AnIcon.icns

data

resource empty

MyApp.strings

data

resource empty

ASound.snd

data

resource empty

or

144 Resource Forks
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 8

The File System

Although Apple supports the all-resources-in-one-file model, it strongly
recommends that developers put their resources in separate files. One consideration
behind this is the emerging use of XML as a way to specify resources. Carbon has
an XML-based runtime that tools such as Interface Builder use to export user
interfaces as XML.

As with applications, documents on Mac OS X should have their resources put in
the data fork. The reasons for this are the same as the reasons for having application
resources in the data fork. It makes it possible to exchange these documents,
without loss of resource data, between Macintosh and non-Macintosh systems,
including most Web servers.

Files residing on HFS and HFS+ file systems have their Finder attributes stored in a
private fork separate from both resource and data forks. These attributes include
type and creator codes. Mac OS X maintains these attributes because they enable the
Finder to enhance the user’s experience. At the same time, however, Apple strongly
encourages developers to use file extensions as alternative means for identifying
document types. Mac OS X does a very good job of recognizing and handling
document extensions. And, as “Copy and Move Operations” (page 153) in the
chapter “The Desktop” (page 145) makes clear, if you copy an HFS or HFS+
document to a different platform (including Web servers), file extensions help
ensure that the document’s type information will be preserved.

The Role of the Desktop 145
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 9

9 The Desktop

The Desktop is the primary application of Mac OS X. Running from the moment you
log in, it works with the system software to track and manage the Dock, the file
system (including mounted network volumes), and connected devices. The Finder
is the part of the Desktop application whose windows track and display items in the
file system and mediate user access to them.

This chapter does not go into detail about the human-interface elements related to
the Desktop. Instead it focuses on those aspects of the Desktop, and issues related
to it, that are of special interest to Mac OS X software developers. This information
includes

� application interfaces to the Desktop

� the stores of information the Desktop maintains

� how the Finder handles applications and documents

� how the Finder handles file operations that take place between volumes of
different formats

The Role of the Desktop

In general, the nature and role of the Desktop in Mac OS X is much the same as it is
in Mac OS 9, where it is called the Finder. The Desktop in Mac OS X is an
application—specifically, a Carbon application— that manages the user’s desktop
and mediates user access to applications, documents, and other items in the file
system. In Mac OS X, the Finder is that part of the Desktop that performs the

146 The Role of the Desktop
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 9

The Desktop

file-system functions. Users launch applications and open documents through the
agency of the Desktop. In a sense, it is the primary application, the one that is
constantly running while users are logged into the system.

There are, however, several striking differences in Mac OS X that affect the nature
and role of the Desktop:

� The Aqua human interface. This interface affects not only the presentation of
desktop elements, but the logic and mechanics behind their use. The dock and
the File Viewer, for example, introduce paradigms absent from Mac OS 9.

� Multiple users. Yes, Mac OS 9 supports multiple users (through the Multiple
Users control panel), but there it is an option. On a Mac OS X system, multiple
users is the norm. Users must log into a Mac OS X system (even if they request
logging in to happen automatically). Once logged in, they work in a
environment largely customized to their own specifications.

� Multiple application environments. Again, the difference in this respect is not
absolute; if you take Java into consideration, Mac OS 9 does (or can) have
multiple application environments. However, the difference in degree is
significant. In Mac OS X must deal with the Carbon, Cocoa, Java, Classic, and
(in some cases) the BSD Command application environments.

� Multiple volume formats. Mac OS X supports various volume formats, both
multiple-fork formats such as Mac OS Extended (HFS+) and flat-file formats
(UFS, among others). It tries to make all file-system operations between volumes
of different formats as seamless as possible. See “The Finder and File
Operations” (page 152) for further information.

The Desktop attempts to make the user’s experience of all application environments
as much the same as possible. However, there are a few issues with the
Classic environment. Classic applications cannot run from volumes that are not
Mac OS Standard (HFS) or Mac OS Extended (HFS+). Applications from all other
environments can run from any volume, regardless of format. In the same vein,
Classic applications cannot open or save documents on any volume that is not HFS
or HFS+.

C H A P T E R 9

The Desktop

Desktop Interfaces to Applications 147
Preliminary  Apple Computer, Inc. July 2000

Desktop Interfaces to Applications

At present, the Desktop offers the information property list as an interface for
applications. Through this interface applications can communicate their essential
data to the Desktop.

Other interfaces are planned, including a suite of Apple events that applications can
send to and receive from the Desktop to accomplish a number of functions,
including opening documents and launching applications.

Information Property Lists
When you develop an application or any other bundle for Mac OS X, you must
specify as part of the project certain key-value pairs for the bundle’s information
property list. This property list is in a file named Info-macos.plist) that, when the
application is built, is made part of the bundle (that is, the application package). It
contains the following Finder-specific information:

� name of application (displayed by the Desktop)

� type and creator codes (type is 'APPL' for applications)

� icon filename

� version string

� descriptive information (displayed by the Desktop)

� documents handled by this application, including document name, icon, role,
types, and extensions

� URLs handled by this application, including URL name, icon, and schemes

This form of Finder interface is more passive than the other interfaces; all a
developer must do is make this information available to the Finder. When the
Finder encounters an application, it extracts the information in Info.plist and
populates its databases with it (see “Information Stored by the Desktop” (page 148)
for details).

148 Information Stored by the Desktop
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 9

The Desktop

For more information on information property lists and the keys that are specific to
the Finder, see “Information Property Lists” (page 156) in the chapter “Software
Configuration.” For related information, see the chapters “Bundles” (page 75) and
“Application Packaging” (page 91).

Information Stored by the Desktop

The Desktop maintains a number of (private) databases that give it a
comprehensive, if not entirely complete, view of the desktop, applications,
documents, and other items that are part of the user experience. This section
describes how the Desktop populates these databases and gives some idea of the
information that resides in them. It also describes file attributes of specific interest
to the Finder.

Collecting Application Information
The way that the Desktop stores information on the file system differs from the way
the Mac OS 9 stores information. The Finder in Mac OS 9 associates a desktop
database with each mounted volume on the system. Each database contains
information about all files and directories on the volume. When the system is
booted, the Finder builds these databases and, thereafter, dynamically updates
them as files and directories are added, changed, and removed.

On Mac OS X the situation is different. Because of the multi-user nature of
Mac OS X, the Finder maintains an application database for each user who has an
account (local or network) on a system. This database contains information about
all the applications the Desktop has encountered for that user and includes
information about the document types understood by each application. The
Desktop extracts this information from the information property lists of
applications (see “Information Property Lists” (page 147) for a summary of this
information).

C H A P T E R 9

The Desktop

Information Stored by the Desktop 149
Preliminary  Apple Computer, Inc. July 2000

The way the Desktop on Mac OS X builds its databases is also different from the
Finder on Mac OS 9.

� The Desktop first adds applications at boot time by scanning the standard
locations for applications in the user, local (plus system), and network domains

� When users navigate through the file system using the Finder, the Desktop adds
applications in each visited directory to its databases.

� When users try to open a document or attempt any other action that requires an
application, and the Desktop cannot find an appropriate application, it displays
a dialog, allowing the user to select an application. This application is added to
the user’s application database.

Because there may be locations in the file system a user has never visited, or
documents of a type she has never attempted to open, the Desktop might have an
incomplete view of the applications available on a system. Yet it has a built-in
capability for “lazily” updating its view of the file system.

The Desktop Folder
The Finder on both Mac OS 9 and the Desktop on Mac OS X store the contents of the
user’s desktop in an invisible folder (named, appropriately enough, Desktop
Folder). Although the name and invisibility of this folder are the same, the folder
location and desktop semantics are quite different for the two operating systems.

� On Mac OS 9 the Desktop Folder is at the root of a volume; on Mac OS X the
Desktop Folder is in the user’s home directory.

� On Mac OS 9 what is displayed on the desktop is the union of each Desktop
Folder on all volumes; on Mac OS X, what is displayed on the desktop is the
contents of the Desktop Folder associated with the logged-in user.

150 The Handling of Applications and Documents
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 9

The Desktop

Finder Attributes
Finder attributes can be associated with files and folders in the Mac OS X file
system. These attributes affect how the Finder displays or handles these files and
folders. The Finder on Mac OS X recognizes fewer such attributes than the Finder
on Mac OS 9. The supported attributes include

� bundle bit

� invisible bit

� type and creator codes

� custom icons

The attributes not supported in Mac OS X are

� icon position

� view type

� label

On Mac OS X the Finder stores attributes in an invisible per-folder file that contains
a data structure that is extensible and volume-format “agnostic.”

The Handling of Applications and Documents

As described in “Information Stored by the Desktop” (page 148), the Desktop
collects information from applications in the file system and populates a number of
databases with that information. When the Finder encounters a file or folder, it often
uses this information to determine how to present the file or folder and how to
manage the user’s interaction with it.

C H A P T E R 9

The Desktop

The Handling of Applications and Documents 151
Preliminary  Apple Computer, Inc. July 2000

The Finder uses a combination of bundle bit, type and creator codes, and filename
extension to identify and appropriately handle documents (including loadable
bundles) and applications. The following steps outline the general logic of the
Finder when it comes across an item in the file system:

1. Is it a file or a folder?

If it is a folder, the Finder determines if it is a bundle (step 2); if it is a file, it
determines the kind of file (step 4).

2. Is the folder a bundle or a regular folder?

The Finder uses either the bundle bit or the folder extension to determine if a
folder is a bundle. The presence of the bundle bit is not necessary and, in fact,
the system frameworks provided by Apple do not have the bundle bit set.

3. What type of bundle is it?

The Finder obtains the type and creator codes from the information stored
within the bundle (see “Anatomy of a Bundle” (page 77) in the chapter
“Bundles”). From the type code (or from the extension if the type code is not
available) it determines the kind of bundle. Unless the bundle is a framework, it
treats the bundle as a file (in other words, it is a file package).

4. Is the file (including file packages from step 3) an application?

If the bundle is an application (as determined by type code or extension), the
Finder hides the .app extension, if it exists. The Finder adds the information in
the application’s information property list to its application database for the user
(if such information is absent from the database); this is described in “Collecting
Application Information” (page 148). If the file is not an application, it is a
document (step 5).

5. Display the document appropriately.

The Finder consults the application database and locates the icon to display next
to the filename. If no such icon exists, it displays the default document icon.

152 The Finder and File Operations
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 9

The Desktop

When a user double-clicks or otherwise tries to open a document in the file system,
the Finder checks the document’s type and creator codes (if it is an HFS or HFS+
file), the document’s file extension, or the “hint” bytes in the first kilobyte of data. It
uses this information as a key to look up the application (or applications) that claims
the document type.

� If there is only one such application, the Finder opens the document in the
application, launching it if necessary.

� If there are no applications claiming the document type, the Finder puts up a
dialog box in which the user can select an appropriate application; this
information is added to the application database.

� If there are multiple applications claiming the document, and the document has
no associated type and creator codes (that is, the file is a non-HFS or non-HFS+
file), the Finder opens the document in one of the applications claiming that
document type.

If the document has neither type and creator codes, file extension, nor “hint” bytes,
the Finder does nothing when the user attempts to open the document. Through the
Desktop users can also select an application with which to open a document when
there are multiple applications claiming that document.

The Finder and File Operations

The Finder is the “traffic manager” for most if not all file operations that take place
in Mac OS X. Unless you use shell commands such as cp and mv (something
generally not recommended), or AppleScript, or some other programmatic means,
you must use the Finder to copy, move, and delete files, as well as to make aliases.
Obviously, there are issues related to these operations that relate to multiple
volume formats. This section discusses how the Finder manages file operations
across volumes of different formats.

C H A P T E R 9

The Desktop

The Finder and File Operations 153
Preliminary  Apple Computer, Inc. July 2000

Copy and Move Operations
When the Finder copies or moves a file, it uses the richest model available, given the
formats of the source and destination volumes. The formats that are most significant
in these kinds of operations are HFS+ (or HFS) and UFS. These operations
particularly affect the representation of the HFS and HFS+ resource fork and the
Finder attributes, especially the type and creator codes.

As one might expect, the Finder preserves the resource fork and Finder attributes of
an HFS+ file “as is” when it copies the file to an HFS+ (or HFS) volume. The more
interesting case, however, is when it copies an HFS+ file to a UFS volume. When this
happens, the Finder splits out the information that is not in the data fork
(particularly the type and creator codes) and writes this information to a hidden file
in the same directory location as the copied file. This hidden file has the same name
as the UFS file, except that it has a “dot-underscore” prefix. Thus, if you have an
HFS+ file named MyMug.jpeg, when you copy it to a UFS volume, there will be a file
named ._MyMug.jpeg in the same location.

When the Finder copies a UFS file to an HFS or HFS+ volume, it looks for the hidden
“dot-underscore” file. If one exists, it creates an HFS+ (or HFS) file reintegrating the
information in the hidden file into the file’s resource fork and Finder attributes. If
the hidden file does not exist, the copied file has no resource fork.

Note that the Finder accomplishes these operations through the Carbon APIs on
which it is based.

Management of Aliases and Symbolic Links
Mac OS Standard (HFS) and Mac OS Extended (HFS+) file systems include the file
system entity known as an alias. An alias bears some similarities to a symbolic link
in a UFS file system, but the differences are significant. See the section “Aliases and
Symbolic Links” (page 140) in the chapter “The File System”for a description of
these differences.

Note: You can use the BSD cp or mv commands on a application package (or any
other bundle) without ill effect. However, if you use those commands on a
single-file CFM application, the copied (or moved) application is rendered
useless. For the latter purpose, Apple includes the CpMac command-line utility.

154 The Finder and File Operations
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 9

The Desktop

How the Finder manages a file-system world in which both aliases and symbolic
links coexist is simple. It recognizes symbolic links but creates only aliases (when
give the appropriate menu command). Even when it encounters a symbolic link in
the file system, it presents it as an alias—that is, there is no visual differentiation
between the two. The only way to make a symbolic link in Mac OS X is to give the
BSD command ln -s.

Property Lists 155
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 0

10 Software Configuration

Mac OS X gives you a number of ways to configure your software. It stores all
configuration data persistently using various mechanisms. These mechanisms
permit dynamic updating of this data and make it available to programs at runtime.

Mac OS X has three basic configuration options:

� Property lists. A textual way to represent data, using XML as the structuring
medium. Elements of the property list represent data of certain types, such as
arrays, dictionaries, and strings. System routines allow programs to read
property lists into memory and convert the represented data into “real” data.

� Information property lists. A special form of property list with predefined keys
for specifying basic bundle attributes and information of interest to the Finder
and other applications. The information property list is stored inside a bundle.
It specifies information such as supported document types, URL schemes, and
copyright and version information. The information property list also allows the
specification of user-defined keys.

� Preferences system. Allows you to create, write, and read preferences per user,
per application, and per host.

Property Lists

A property list in Mac OS X is a textual representation of data that uses the
Extensible Markup Language (XML) as the formal structuring medium. The
flexibility that such structuring affords is a great programmatic convenience.

156 Information Property Lists
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 0

Software Configuration

(See http://www.w3.org/XML/1999/XML-in-10-points for an excellent summary of
XML.) Elements of the XML correspond to programmatic entities such as arrays,
dictionaries, and strings.

You can create a property list with the Property List Editor application or, if that is
not available, any text editor. Then you add the file to your project. Property lists
are stored as a bundle resource (usually nonlocalized). Once your program is built
and run, it can easily access the information in the property list by using special
routines that read the property list and convert the data represented in it to the
appropriate types. The supported property-list types are dictionary, array (vector),
string, data, date, number, and Boolean.

Custom property lists are sometimes used to specify certain types of initialization
data, such as key bindings. A file named CustomInfo.plist is often used for this
purpose.

Information Property Lists

Information property lists are system property lists (see “Property Lists”
(page 155)) that contain essential configuration information for bundles. This
information is readily available to system and program code at runtime. As
described in the section “Types of Bundles” (page 83) of the chapter Bundles, a
bundle is a packaging scheme and generic programmatic type for such things as
applications, frameworks, and plug-ins. Information property lists are thus a
pervasive and important means for configuring software of almost all kinds. They
make available information that the Finder (and possible other applications) need,
and they enable applications to deal with HFS and HFS+ files.

By convention, information property lists are found in files with the name
Info.plist. They can contain platform-specific information, in which case the tag
for the platform is embedded in the filename; the standard platform-specific names
are the following:

Info-macos.plist

Info-macosclassic.plist

C H A P T E R 1 0

Software Configuration

Information Property Lists 157
Preliminary  Apple Computer, Inc. July 2000

If the configuration information is generic to all platforms (as is ideally the case), the
name is Info.plist. When the bundle code is executed, it looks first for the
platform-specific file; if that does not exist in the bundle, it reads the
platform-generic file. Because the search algorithm searches for a file and not a
particular key, if you have both a platform-specific file and a platform-generic file,
make sure each contains a corresponding set of key-value pairs. Information
property list files are located in the Contents directories of bundles.

The Info.plist file for a bundle can contain all kinds of information. At the top level
of the property list, this information is specified as key-value pairs (that is, as a
dictionary). Mac OS X defines a set of standard keys for basic configuration
information, such as the name of the executable and the version of the bundle. The
Finder also defines keys for such things as documents, icons, and the information it
displays to users. You are free to define and use your own keys. The integrated
development environment (IDE) provides the human interface for entering
standard, Finder, and custom configuration data in the Info.plist file as key-value
pairs. For the standard information property list keys, see “Standard Keys”
(page 161); for the Finder keys, see “Finder Keys” (page 163).

A special localized resource file named InfoPlist.strings goes with the Info.plist
file. The InfoPlist.strings file contains keys for the information property list that
might need to be localized. These keys are the values specified for associated keys
in the Info.plist file. Commonly localized keys are CFBundleName,
CFBundleShortVersionString, CFBundleGetInfoString, CFBundleGetInfoHTML, and the
values of the CFBundleTypeName and CFBundleURLName types. See “Bundles” (page 75)
for more about localized bundles, particularly where they go in the bundle and how
they are located.

Document Configuration
Information property lists for applications that create or “understand” documents
permit the definitions of abstract types and roles. These definitions apply to
pasteboard data (analogous to Clipboard data on Mac OS 8 and 9) as well as
documents.

An abstract type defines general characteristics of a family of documents. Each
abstract type has corresponding concrete types, such as a filename extension or a
4-byte identifier. Concrete types are ways that an abstract type is encoded in various
file systems or persistent formats. The notion of abstract types improves general

158 Information Property Lists
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 0

Software Configuration

application interoperability by removing the current dichotomy between the
pasteboard type system and the filename-extension type system. Abstract type
names should have a copyright to ensure uniqueness.

A role defines an application’s relation to a document type. There are five roles:

� Editor. The application can read, manipulate, and save the type.

� Viewer. The application can read and present the data.

� Printer. The application can print the data only.

� Shell. The application provides runtime services for other processes—for
example, a Java applet viewer. The name of the document is the name of the
hosted process (instead of the name of the application), and a new process is
created for each document opened.

� None. The application does not understand the data, but is just declaring
information about the type (for example, the Finder declaring an icon for fonts).

An Example
Listing 10-1 contains an example of an Info.plist file. This information property
list, which is taken from the Sketch demonstration application, is interesting
because it shows how document types for this application are specified.

Listing 10-1 The Info.plist file for the Sketch demo application

<?xml version="1.0" encoding="UTF-8"?>
<plist version="0.9">
<dict>

<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundleVersion</key>
<string>1.1.0</string>
<key>CFBundleGetInfoString</key>
<string>Apple Sketch Application Example 1.1.0. Copyright \U00A9 1998,

Apple Computer, Inc.</string>
<key>CFBundleName</key>
<string>Sketch</string>
<key>NSPrincipalClass</key>

C H A P T E R 1 0

Software Configuration

Information Property Lists 159
Preliminary  Apple Computer, Inc. July 2000

<string>NSApplication</string>
<key>CFBundleIdentifier</key>
<string>com.apple.CocoaExamples.Sketch</string>
<key>NSMainNibFile</key>
<string>Draw2Java.nib</string>
<key>NSHumanReadableCopyright</key>
<string>Copyright \U00A9 1998, Apple Computer, Inc.</string>
<key>CFBundlePackageType</key>
<string>APPL</string>
<key>NSJavaRoot</key>
<string>Support Files/Resources/Non-localized Resources/Java</string>
<key>CFBundleSignature</key>
<string>sktc</string>
<key>NSJavaNeeded</key>
<string>Yes</string>
<key>NSJavaPath</key>
<array>

<string>sketch.zip</string>
</array>
<key>CFBundleShortVersionString</key>
<string>Apple Sketch Application Example 1.1.0</string>
<key>CFBundleExecutable</key>
<string>Sketch</string>
<key>CFBundleIconFile</key>
<string>Draw2App</string>
<key>CFBundleDocumentTypes</key>
<array>

<dict>
<key>CFBundleTypeIconFile</key>
<string>Draw2File</string>
<key>CFBundleTypeOSTypes</key>
<array>

<string>sktc</string>
</array>
<key>NSDocumentClass</key>
<string>DrawDocument</string>
<key>CFBundleTypeName</key>
<string>Apple Sketch Graphic Format</string>
<key>CFBundleTypeRole</key>
<string>Editor</string>
<key>NSExportableAs</key>

160 Information Property Lists
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 0

Software Configuration

<array>
<string>NSPostScriptPboardType</string>
<string>NSTIFFPboardType</string>

</array>
<key>CFBundleTypeExtensions</key>
<array>

<string>sketch</string>
<string>draw2</string>

</array>
</dict>
<dict>

<key>CFBundleTypeOSTypes</key>
<array>

<string>eps </string>
</array>
<key>CFBundleTypeExtensions</key>
<array>

<string>eps</string>
</array>
<key>CFBundleTypeName</key>
<string>NSPostScriptPboardType</string>
<key>CFBundleTypeRole</key>
<string>None</string>

</dict>
<dict>

<key>CFBundleTypeOSTypes</key>
<array>

<string>tiff</string>
</array>
<key>CFBundleTypeExtensions</key>
<array>

<string>tiff</string>
</array>
<key>CFBundleTypeName</key>
<string>NSTIFFPboardType</string>
<key>CFBundleTypeRole</key>
<string>None</string>

</dict>
</array>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>

C H A P T E R 1 0

Software Configuration

Information Property Lists 161
Preliminary  Apple Computer, Inc. July 2000

</dict>
</plist>

The Sketch application associates with this Info.plist file (actually
Info-macos.plist) an InfoPlist.strings file in the English-localized resource
directory.

Listing 10-2 The InfoPlist.strings file for the Sketch demo application

{
CFBundleName = "Sketch";
CFBundleShortVersionString = "Apple Sketch Application Example 1.1.0";
CFBundleGetInfoString = "Apple Sketch Application Example 1.1.0.

Copyright \U00A9 1998, Apple Computer, Inc.";
NSHumanReadableCopyright = "Copyright \U00A9 1998, Apple Computer, Inc.";

"Apple Sketch Graphic Format" = "Apple Sketch Graphic Format";
"NSPostScriptPboardType" = "NSPostScriptPboardType";
"NSTIFFPboardType" = "NSTIFFPboardType";

}

Standard Keys
Mac OS X defines a small set of standard keys. Some of these keys are given default
values by the integrated development environment.

CFBundleInfoDictionaryVersion. Used to support future versioning of the
Info.plist format. It is automatically generated by the development environment
when you are building a bundle.

CFBundleExecutable. The name of the main executable for the bundle. For an
application, this is the application executable. For a loadable bundle, it is the binary
that will be loaded dynamically by the bundle. For a framework, it is the shared
library for the framework (in the case of a framework, the executable name is
required to be the same as the framework name for launch-performance reasons).
The executable name should not include any extension that may be used on various
platforms.

162 Information Property Lists
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 0

Software Configuration

CFBundleIdentifier. The unique identifier string for the bundle. This identifier
should be in the form of a Java-style package name, for example com.apple.foo.bar.
The bundle identifier can be used to locate the bundle at runtime. The preferences
system uses this string to identify applications uniquely.

CFBundleVersion. A Mac OS ‘vers’ resource style version number. The value of
this key should be a string. The value is application-specific; however, if the
standard form “2.5.3d5” is used, the system’s bundle routines can correctly retrieve
the value. If the value is an arbitrary number, the bundle routines treat it as a string,
but then the routines are not guaranteed to return the proper numeric
representation.

CFBundleDevelopmentRegion. The “native” region for the bundle. Usually this is
the native language of the person who wrote the bundle. The development region
is used as the last resort if a resource cannot be located for the user’s preferred
region or language.

The following keys are applicable to Cocoa bundles only:

NSJavaNeeded. If given a “true” boolean value, then the Java VM is loaded and
started up, if necessary. A “true” boolean value can be either a CFBoolean object set
to true (in XML) or a “YES” string value.

NSJavaPath. An array of paths to classes whose components will be preceded by
NSJavaRoot if they are not absolute locations. The development environment (or,
specifically, its makefiles) automatically maintains the values in the array.

NSJavaRoot. A string specifying the root of the directory location where the
application's Java classes are.

NSMainNibFile. The name of an application’s main nib file. A nib file is an
Interface Builder archive containing the description of a human interface along with
connections between objects of that interface. The main nib file is automatically
loaded when an application is launched. By default, this filename is the name of the
application with an extension of .nib.

NSPrincipalClass. The name of a bundle’s principal class. The principal class is
designated the main class because of its central relation to other classes in the
bundle. By default, this name is the application name.

C H A P T E R 1 0

Software Configuration

Information Property Lists 163
Preliminary  Apple Computer, Inc. July 2000

NSServices. An array of dictionaries specifying the services provided by an
application. Keys for this subdictionary are NSPortName, NSSendTypes,
NSMenuItem, and NSMessage.

NSHumanReadableCopyright. A string containing copyright information to put in
the Show Inspector dialog box. This key is usually in the InfoPlist.strings file
because it needs to be localized.

NSHelpFile. The name of the bundle’s HTML help file. This file is located in the
bundle’s localized resource folders or in the Nonlocalized Resources directory.

NSBGOnly. If set to 1, makes your application background-only. This is necessary
only forprocesses that use higher-level frameworks that connect to the window
server.

Finder Keys
These keys are used by the Mac OS X Finder to store important information about
a bundle. Among other things, the Finder uses these properties to locate and display
an application’s icon and recognize associated document types.

CFBundleName. The short name of the bundle suitable for displaying in various
places in the user interface, such as the menu and the About box. This key is usually
in the InfoPlist.strings file because it needs to be localized.

CFBundlePackageType. The four-letter type code for the bundle. This is ’APPL’ for
applications, ’FMWK’ for frameworks, and ’BNDL’ for generic bundles. You can choose
a more specific type code for generic bundles.

CFBundleSignature. The four-letter creator code for the bundle.

CFBundleIconFile. The filename of the bundle resource that contains the icon to be
used to display this bundle in the Finder (or other applications). The filename can
have an extension or be without one. If it is without an extension, the system
appends an extension appropriate to the platform (for example, “icns” on
Macintosh).

CFBundleShortVersionString. A human-readable description of the bundle’s
version. This should be more than just the string that can be generated from the
CFBundleVersion key, if present. This key is usually in the InfoPlist.strings file
because it needs to be localized.

164 Information Property Lists
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 0

Software Configuration

CFBundleGetInfoString. A human-readable plain text string displayed in the
Show Inspector dialog box. This key is usually in the InfoPlist.strings file because
it needs to be localized.

CFBundleGetInfoHTML. A human-readable HTML string displayed in the Show
Inspector dialog box. This key is usually in the InfoPlist.strings file because it
needs to be localized. You can specify this key-value pair instead of the plain text
CFBundleGetInfoString if you want a richer representation. If
CFBundleGetInfoString and CFBundleGetInfoHTML are both present,
CFBundleGetInfoHTML is used.

CFBundleDocumentTypes. An array of the type definitions for any document
types an application understands. Each type definition is a dictionary in the array.
These keys are supported in the type-definition dictionary:

� CFBundleTypeName. The abstract name for the document type, which must be
present for the type to be valid. This is the main way to refer to a type, and is
used by the system when data is on the pasteboard. To ensure uniqueness, it is
recommended that you use a Java-package style identifier. This identifier is also
used as a key in the InfoPlist.strings file to provide the human-readable
version of the type name. If the type is a system type, you can use one of the
symbol names for common pasteboard types:

NSStringPboardType
NSFilenamesPboardType
NSPostScriptPboardType
NSTIFFPboardType
NSRTFPboardType
NSTabularTextPboardType
NSFontPboardType
NSRulerPboardType
NSFileContentsPboardType
NSColorPboardType
NSPICTPboardType
NSPDFPboardType
NSURLPboardType

C H A P T E R 1 0

Software Configuration

Information Property Lists 165
Preliminary  Apple Computer, Inc. July 2000

� CFBundleTypeIconFile. Specifies the filename (minus the extension) of the
resource in the bundle that contains the icon the Finder should display for the
type. The filename can have an extension or be without one. If it is without an
extension, the system appends an extension appropriate to the platform (for
example, “icns” on Macintosh).

� CFBundleTypeRole. Defines the application’s role with respect to the type. The
role can be Editor, Viewer or None. An editor can read, manipulate, and write the
type, a viewer can only read the type, and an application that wants to simply
declare a type without claiming to be able to read or write it can use None.

� CFBundleTypeOSTypes. An array of four-letter type codes that map to this
type.

� CFBundleTypeExtensions. An array of filename extensions that map to this
type.

� NSDocumentClass. The NSDocument subclass used to instantiate instances of
this document. Used for Cocoa applications only.

� NSExportableAs. An array of other types that documents of this type can be
exported as (write-only types). Used for Cocoa applications only.

CFBundleURLTypes. An array of dictionaries similar to CFBundleDocumentTypes,
but it describes URL schemes that the application can handle. These keys are
supported in a URL-type dictionary:

� CFBundleURLName. The abstract name for this URL type. This is the main way
to refer to a particular type. To ensure uniqueness, it is recommended that you
use a Java-package style identifier. This name is also used as a key in the
InfoPlist.strings file to provide the human-readable version of the type name.

� CFBundleURLIconFile. Specify the filename (minus the extension) of the
resource in the bundle that contains the icon to be used for this type.

� CFBundleURLSchemes. An array of URL schemes handled by this type (http,
ftp, and so forth)

Application Package Keys
The application pacakge keys enable an application bundle on Mac OS X to control
how and where its resources get installed. Installation of an application package
takes place in two stages. First, the user or administrator copies the package to the
desired installation location (assuming that person has the proper permissions for

166 The Preferences System
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 0

Software Configuration

the copy). Then, in the inspector for the application (accessed via the Desktop’s
Show Inspector command), the user or administrator selects the resources to be
installed and clicks the Install button. Resources can be uninstalled in a similar
manner.

APInstallerURL. A URL identifying the program used to install the items in the
application package. (Currently, the only URL scheme supported is file:.)

APFiles. An array of dictionaries (key-value pairs) describing the files or directories
that can be installed. Each dictionary has the following keys:

� APFileName. The name of the file or folder.

� APFileDescriptionKey. A short description of the file or folder.

� APFileSourcePath. The path to the file in the applciation package, relative to the
installer.

� APFileDestinationPath. The path to the installation location, relative to the
application bundle.

� APInstallAction. The action to take in regards to the file or folder, either “Copy”
or “Open”.

� APDisplayedAsContainer. If “true” the item displayed in the inspector is
shown with a folder icon; if “false” it is shown with a document icon.

The Preferences System

Preferences are application or system options that users can select to customize their
working environment. For example, automatic save, default font, and smart quotes
are common preferences for document-based applications. Almost all applications
need to store and retrieve preferences. The preferences system of Mac OS X not only
let users customize the behavior of applications and system software, but it
provides a way to preserve preference settings across multiple launches.
Preferences are not limited to applications; frameworks and libraries can write and
read preferences including, on occasion, user preferences. For creating, writing,
reading, and removing preferences, use Core Foundation’s Preference Services or,
for Cocoa developers, the NSUserDefaults class.

C H A P T E R 1 0

Software Configuration

The Preferences System 167
Preliminary  Apple Computer, Inc. July 2000

Important
You should not store data needed to configure an
application at launch time as a preference. The assumption
with user preferences is that they are not critical; if somehow
they are lost, the application can recreate the default set of
preferences. Initial configuration information is critical and
should be stored in the information property list or some
other property list stored inside the application package.

The preferences system stores values that are associated with a key; later you can
use the key to “look up” the preference value when you need it. Key-value pairs are
assigned a scope using a combination of user name, application ID, and host
(computer) name. This mechanism allows you to create preferences that apply to
different classes of users. For example, you can save a preference value that applies
to

� the current user of your application on the current host

� all users of your application on a specific host connected to the local network

� the current user of your application on any host connected to the local network
(the usual category for user preferences)

� any user of any application on any host connected to the local network

How Preferences Are Stored
The preferences system stores preference data in files located in the Library/
Preferences folder in the appropriate file-system domain. For example, if the
preference applies to a single user, the file is written to the Library/Preferences
folder in the user’s home directory. If the preference applies to all users on a
network, it goes in /Network/Library/Preferences.

The files in Library/Preferences take a name that uniquely identifies an application.
Each name is from application’s bundle identifier. You assign the bundle identifier
(using the key CFBundleIdentifier) in your application project as part of its
information property list (see “Standard Keys” (page 161) for details). The system
routines related to preferences use the bundle identifier to find the preferences for
a given application.

To ensure that there are no naming conflicts, Apple strongly recommends that
bundle identifiers be the same form as Java package names—your company’s
unique domain name followed by the application or library name. Some examples

168 The Preferences System
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 0

Software Configuration

are com.apple.Finder, com.adobe.Photoshop, and com.foo.ImageImport. Using this
scheme minimizes the possibility of name collision and leaves you responsible for
managing the identifier name space under your corporate domain.

Core Foundation’s Bundle Services and, for Cocoa applications, the NSBundle class
provide routines for accessing an application’s bundle identifier. You should
always use these routines and never hard-code the application identifier.

The preferences files in Library/Preferences have the extension of .plist. This
extension indicates that they contain property lists. If you wish, you can directly
modify these XML property lists to add or change application preferences. By doing
so, however, you can introduce editing errors into the XML; if this happens, the
application might not be able to load the file and so it will lose all its preferences. If
you must edit preferences files, use the Property List Editor application.

Problems might ensue if an application tries to write preferences to a location other
than Library/Preferences in the appropriate file-system domain. For one thing, the
preferences APIs aren’t designed for this difference. But more importantly,
preferences stored in unexpected locations are excluded from the preferences
search list and so might not be noticed by other applications, frameworks, or system
services.

Preference Domains
When you create a new preference or search for an existing one, the preferences
system uses the notion of preference domains to specify the scope and location of
the preference. A preference domain consists of three pieces of information: an
application identifier, a host name, and a user name. Table 10-1 shows all of the
preference domains, listed in the order they are searched when the preference
system attempts to locate a preference value.

Table 10-1 Preference domains in search order

1 Current User Current Application Current Host

2 Current User Current Application Any Host

3 Current User Any Application Current Host

4 Current User Any Application Any Host

C H A P T E R 1 0

Software Configuration

The Preferences System 169
Preliminary  Apple Computer, Inc. July 2000

The search routines look through the various preference domains in the order given
above until they find the key you have specified. If a preference has been set in a
less-specific domain—”Any Application,” for example —its value will be retrieved
with this call if a more specific version cannot be found. This means that values in
more-specific domains override those for the same key in less-specific domains.

The defaults Utility
The preferences system of Mac OS X includes a command-line utility named
defaults for reading, writing, and removing preferences (or, user defaults) from
application and other domains. The defaults utility is invaluable as an aid for
debugging applications. Much of the preferences information is accessible through
an application’s Preference dialog (or the equivalent), but some of it isn’t, such as
the position of a window. You can access this information with the defaults utility.

To run the utility, launch the Terminal application and, in a BSD shell, enter
defaults plus all appropriate command options. For a terse description of syntax
and arguments, run the defaults command by itself. For a fuller description, run the
command with the usage argument:

$ defaults usage

Because applications access the preferences system while they are running, you
should not modify the defaults of a running application using defaults. If you
change a default in a domain that belongs to a running application, the application
probably won’t see the change and might overwrite the default.

5 Any User Current Application Current Host

6 Any User Current Application Any Host

7 Any User Any Application Current Host

8 Any User Any Application Any Host

Table 10-1 Preference domains in search order (continued)

Tasks and Processes 171
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 1

11 Inter-Environment Issues

Because Mac OS X is a highly layered system, there are often equivalent
mechanisms at different layers. For example, threading APIs are available in Mach,
in BSD, and in each of the application environments (because the latter are layered
on top of the former). This section discusses some programming issues that might
arise when there are different technologies and APIs (and even different
terminologies) at each layer of the system.

Tasks and Processes

Different components make up Mac OS X, each with its own background, and this
sometimes leads to clashes in terminology. This different terminology is often
reflected in APIs as well as in documentation. The notions of “task” and “process”
provide an important case in point. You have Mach tasks and BSD processes and
Carbon Process Manager (CPM) processes and Multiprocessing Services tasks and
so on.

A valuable aid for disambiguating this tangle is the following “equation”:

Mach task = BSD process = Carbon Process Manager process

A Mach task, as defined by the Open Software Foundation, is a “container that
holds a set of threads. More importantly, it contains those elements that
the...threads need to execute, namely a port name space and a virtual address
space.” (Mach 3 Kernel Principles). In other words, the job of a Mach task (or BSD or
Carbon Process Manager process) on Mac OS X is to manage memory, address

172 Threading Packages
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 1

Inter-Environment Issues

spaces, and other resources related to the execution of its threads. Each Mach task
(or process) has its own 4 gigabytes of virtual address space and this space is
protected.

One Carbon Process Manager (CPM) process is layered on top of one BSD process.
This layering enables the CPM APIs. Every Carbon, Cocoa, and Java application
process is thus, at the same time, a Mach task, a BSD process (with its own process
ID), and a CPM process (with its own PSN, or process serial number). Classic
processes are an exception to the one-to-one process model. The applications
running in Classic each have their own CPM process, but these multiple processes
are layered on one BSD process.

Both Carbon and Cocoa include the name “task” elsewhere in their APIs. Cocoa
uses “task” and “process” in the Mach and BSD senses. An object created with the
Foundation framework’s NSTask class is actually associated with a subprocess
spun off from a parent process; it is a separate executable entity with its own set
of threads and address space. Multiprocessing Services calls its user-level
preemptive threads “tasks,” largely to avoid conflict with the Thread Manager’s
(cooperative) threads. See the following section, Threading Packages, for more on
Multiprocessing Services tasks.

Threading Packages

A thread is an execution context within a process (see “Tasks and Processes”
(page 171)). It is associated with a call stack and a processor’s state. A thread shares
virtual address space and other task-wide resources with other threads of the
process. Threads are scheduled to run preemptively or, with symmetric
multiprocessing, concurrently. User threading models can, however, use various
synchronization mechanisms to present cooperative threading behavior.

The capability for a process, such as an application, to have multiple executing
threads is extremely valuable because it can enable greater program efficiency and
simplifies the programming of some tasks. But multithreaded programming can
also make some things more complicated.

C H A P T E R 1 1

Inter-Environment Issues

Threading Packages 173
Preliminary  Apple Computer, Inc. July 2000

Mac OS X gives developers a variety of models and programming interfaces for
multithreading their programs. These packages have dependencies among
themselves, since some packages are layered on top of others. Figure 11-1 depicts
these packages and the dependencies.

Figure 11-1 Threading packages in Mac OS X

The kernel environment of Mac OS X, specifically Mach, provides the fundamental
thread support. Mach maintains the register state of its threads and schedules them
preemptively in relation to one another. In the case of symmetric multiprocessing,
the kernel can preemptively schedule threads concurrently, one on each processor.
The client API for Mach threads is implemented in the System framework.

The other threading models or packages are implemented on top of Mach threads.

Threading package Description

POSIX threads The thread package included with the kernel environment
for implementing preemptively scheduled threads. It is one
of the standard threading models in the industry. It is
included in the System framework.

Multiprocessing
Services

Package for preemptively scheduled threads on Carbon.
It is layered on top of POSIX threads and is part of the Core
Services layer.

Mach threads

Multiprocessing
Services (Carbon)

Thread Manager
(Carbon)

NSThread
(Cocoa) java.lang.Thread

POSIX threads

174 Threading Packages
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 1

Inter-Environment Issues

You should always use one of the client APIs instead of the Mach APIs if possible.

Layering Details
As Figure 11-1 (page 173) illustrates, the BSD POSIX threads package (also known
as Pthreads) layers its own multithreading environment on top of the kernel
environment’s Mach threads. The package schedules its threads preemptively and
maintains a one-to-one mapping between a Mach thread and a POSIX thread.

The thread packages of the application environments are layered on top of POSIX
threads. As with POSIX threads, they build their own multithreading environments
on the threading substrata. The threads provided by Carbon’s Multiprocessing
Services and Cocoa’s NSThread class are preemptively scheduled and have a
one-to-one mapping with the underlying POSIX thread. (In fact, the
Multiprocessing Services threads, called “tasks” in the API, are thin covers for
POSIX threads.) The Thread Manager’s threads, on the other hand, are
“multiplexed” onto a single POSIX thread and can only be cooperatively scheduled.

Usage Guidelines
When an application process is launched it automatically acquires one thread,
regardless of the application environment. If you want your application to be
multithreaded, you should use, in most cases, the thread package appropriate to
your application environment and, for Carbon, to the type of required thread
(preemptive or cooperative).

Thread Manager Package for cooperatively scheduled threads on Carbon.
It is layered on top of POSIX threads and is part of the Core
Services layer.

NSThread Class whose objects wrap preemptively scheduled threads
for use in Cocoa applications. It is layered on top of POSIX
threads and is provided by the Foundation framework.

java.lang.Thread Class whose objects wrap preemptively scheduled threads
for use in Java applications. It is layered on top of POSIX
threads.

Threading package Description

C H A P T E R 1 1

Inter-Environment Issues

Interprocess Communication 175
Preliminary  Apple Computer, Inc. July 2000

You should use POSIX threads when you want maximum source code
compatibility with other operating systems. For example, a good deal of BSD code
uses POSIX threads, which should be compatible with the implementation in Mac
OS X.

Except for rare exceptions (such as debuggers), your projects should avoid creating
and managing Mach threads. These threads lack much of the infrastructure
provided by POSIX threads. Moreover, use of Mach threads is likely to lead to
compatibility problems later.

Interprocess Communication

In Mac OS X, a program has a number of ways to communicate with other
programs. It can let them know what it is doing, request data or a service from them,
or send whatever information might be interesting to them. These mechanisms for
interprocess communication each have their own purposes, limitations, and
intended scenarios. Some are more suitable than others for code written at a certain
level of the system; for example, kernel extensions would not make use of Apple
events.

This section summarizes each of the mechanisms or APIs for interprocess
communication in Mac OS X and offers some guidelines for their use.

� Apple events and AppleScript. As described in “Apple Events” (page 70), an
Apple event is a high-level event that a process such as an application can send
to another process or even to itself.

To use Apple events, the receiving (server) process and, generally, the sending
(client) process must contain code specific to these events. That is, they must
define and implement handlers for all possible Apple events that they might
expect to receive. An Apple-event handler extracts data from an Apple event,
performs the requested command, and (usually) returns a result. A centralized
Apple event registry defines the standard suites of Apple events: Required,
Core, and functional-area suites such as Text and Database. An application can
define its own custom Apple events, but these should be recorded in the
registry.

176 Interprocess Communication
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 1

Inter-Environment Issues

� Distributed notifications. Distributed notifications are messages that any
process can post to a per-machine “notification center,” which in turn forwards
them to any observers (processes) on that same machine that are interested in
receiving the notification. Included with the notification is an identifier of the
sender and, optionally, a dictionary containing additional information. The
distributed-notification mechanism is implemented by Core Foundation
Notification Services (see “Core Foundation” (page 67)) and by Cocoa’s
NSDistributedNotificationCenter class.

Distributed notifications have several features that make them a good choice for
communicating information between processes: multicasting-type behavior,
asynchronicity, and coalescing and suspension of notifications. They are ideal
for ensuring that applications and other processes on a computer are aware of
each other’s behavior so they can respond appropriately. Unlike Apple events,
however, you cannot use distributed notifications to send messages to a remote
process (that is, a process on a different machine). In addition, Notification
Services provides no way to respond directly to the sender of a notification. A
process can use distributed notifications to post notifications to itself, although
this is an expensive operation.

� BSD mechanisms.

� Signals. Signals are preset conditions that can be delivered to processes. A
process examines the condition each time its time slice comes around and
acts accordingly, often by delivering the process to a specified handler.

� Shared memory and memory-mapped files (both POSIX semaphores for
synchronization).

� Sockets and pipes (both unnamed as well as named pipes).

The primary users of these BSD facilities are typically operating-system services
that need compatibility with other BSD-based operating systems. Note that the
behavior of these facilities might differ between BSD systems. Consult the man
pages or other BSD documentation for further information.

� Mach messaging. Processes can send messages to other processes using the
Mach messaging infrastructure. Developers of all types of software are
discouraged from using Mach messaging directly if other alternatives are
available.

C H A P T E R 1 1

Inter-Environment Issues

Library Managers and Executable Formats 177
Preliminary  Apple Computer, Inc. July 2000

Library Managers and Executable Formats

A runtime environment (or, simply, runtime) is a set of conventions that determines
how code and data are loaded into memory and managed. Mac OS X supports two
primary runtime environments—dyld (dynamic link editor) and CFM (Code
Fragment Manager). One of the thorny issues raised by multiple runtimes on one
system is how to allow, for example, code prepared for one runtime to access code
prepared for another. This section discusses the issue and describes the technology
Apple has developed for bridging between them. It also explains Apple’s position
on the runtime approaches it recommends to developers.

This section provides a comparative overview of the dyld and CFM runtimes as
well as the executable formats of the code and data they operate upon. For a more
detailed discussion of the CFM-based runtime environment, see the Carbon
documentation on the Code Fragment Manager, especially the chapter “CFM-Based
Runtime Architecture.” In this book, see “Dynamic Shared Libraries” (page 108) in
the chapter “Frameworks” for a description of the dynamic link editor.

Comparing the Runtime Environments
A CFM-based application cannot directly call a function in a dyld-based framework,
and the reverse is also true. In order to understand this restriction—and Apple’s
solution—you must first understand the major differences between the two
environments.

CFM and dyld

The Code Fragment Manager (CFM) and the dynamic link editor (dyld) are library
managers. (Other terms might also be applicable but, for the sake of this discussion,
“library manager” suffices). A library manager is responsible for mapping one or
more containers (or modules) of code and data into memory and preparing them for
execution. It prepares them for execution primarily by attempting to resolve
references to symbols defined externally. These symbols are typically defined in
shared libraries that the container links with at build time.

178 Library Managers and Executable Formats
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 1

Inter-Environment Issues

The major difference in the behavior of the dyld and CFM library managers is when
they resolve these references and bind them to addresses in the appropriate
libraries. CFM takes a static approach; it prepares each container of code and data
(called a fragment) as a unit (called a closure). At build time, CFM finalizes the
executable by determining where the various referenced symbols will exist at
runtime. The dyld library manager, on the other hand, attempts to resolve all
undefined symbols at runtime. More specifically, symbols are resolved only as they
are referenced during program execution. It links code modules in a dynamic
shared library only as they are needed.

PEF and Mach-O

Both the dyld and CFM library managers expect the container of code and data that
they prepare for execution to be in a certain executable file format. The executable
format is a packaging convention for machine-ready (executable) code. For CFM,
this format is called PEF (Preferred Executable Format) and for dyld, the format is
called Mach-O (Mach object-file format).

PEF and Mach-O are similar in many respects. They both define sections (or
segments) for code, global data, nonconstant data, and so on. Where they primarily
differ is their allowance for multiple containers. PEF is a format for a container (a
fragment) that maps one-to-one to an executable. In the dyld world, however, an
executable can be composed from multiple Mach-O containers (object files).

Code-Generation Models

Although they are significant, the major differences discussed so far between
library managers and their executable formats do not explain why a CFM-based
program cannot directly call a function in a dyld-based library. The real source of
incompatibility between the CFM runtime and the dyld runtimes is the different
external calling conventions used by their code-generation models. The differences
affect the representation of C function pointers and the way global data is accessed.

� The CFM code-generation model uses a pointer to a TVector as the basis for
function pointers. It accesses global data indirectly via the R2 register, using it as
a base pointer to the global data. This method of access is known as TOC.

� The dyld code-generation model uses a simple pointer to code as the basis for
function pointers. It accesses global data relative to code, using an offset from a
base address. This method of access is known as GOT.

C H A P T E R 1 1

Inter-Environment Issues

Library Managers and Executable Formats 179
Preliminary  Apple Computer, Inc. July 2000

Vector Libraries
All system frameworks on Mac OS X are based on dyld and Mach-O. Some of these
frameworks contain Carbon APIs. Therefore, if you have a CFM-based Carbon
application or library, your code needs to call functions in these system
frameworks. Apple has made it possible for CFM-based code to call functions in a
dyld-based framework through a technology called a vector library. A vector
library functions as a bridge for a system framework that contains Carbon APIs.
Part of this bridge is a vector or jump table that provides the “glue” code to handle
the differences in code-generation models. A CFM-based client (application or
library) can use these vector libraries and thereby access the Carbon APIs in the
associated dyld-based framework.

Carbon developers don’t have to do anything special to access code in system
frameworks, as long as that code is defined as part of Carbon. To take advantage of
the bridging technology of the vector libraries, they need only link against the stub
libraries found in the CarbonLib SDK.

Note that vector libraries do not bridge in the other direction—from a dyld
application or framework into a CFM library. It is possible to call from dyld to CFM
using a CFPlugIn, but this solution is not appropriate for all situations. In general,
if you want a library to be available to all of the Mac OS X execution environments,
you should build it as dyld.

CFM Executable and Non-Carbon APIs
There may be occasions when a CFM-based application or library wants to call into
a system framework that does not contain any Carbon APIs. A good example of
such a framework is System.framework, which implements many of the POSIX
kernel-environment APIs. Mac OS X supplies no vector libraries for this purpose.

The system does provide another mechanism for accessing non-Carbon APIs in
system frameworks: the plug-in. You can create a dyld-based plug-in that links with
a non-Carbon framework and is therefore able to directly call the framework’s

180 Library Managers and Executable Formats
Preliminary  Apple Computer, Inc. July 2000

C H A P T E R 1 1

Inter-Environment Issues

functions. A CFM application can then use the Carbon plug-in APIs (specifically
Core Foundation Plug-in Services) to load the plug-in and use it to call into the
non-Carbon framework. Figure 11-2 illustrates how this is done.

Figure 11-2 A Carbon application calling BSD system routines

Should You Use CFM or dyld?
Experienced developers understand that if you want to maximize an application’s
performance for a particular platform, you must optimize your code for that
platform. Mac OS X is natively a dyld platform. After all, the system frameworks—
even the ones with Carbon APIs—are based on dyld and Mach-O. In fact, the Code
Fragment Manager itself is built on top of dyld technology. For this reason, Apple
strongly encourages developers to use dyld and Mach-O for their programs.

For compatibility reasons, CFM-based programs are supported on Mac OS X.
However, Apple encourages the use of the application packaging scheme described
in the chapter “Application Packaging” (page 91)) to build application bundles
containing multiple executable formats. If you are developing a Carbon application,
and want to maximize performance on both Mac OS X and Mac OS 9, then you
should compile the same set of source code for both runtime environments—one for
dyld, the other for CFM—then optimize each executable for its intended platform.
In this way, your application can take advantage of the native runtime environment
on both platforms.

Carbon.framework System.framework

1. Calls Core
Foundation APIs

2. Loads

3. Calls BSD APIs

MyCarbonApp.app MyPlugin.plugin

CFM dyld

181
Preliminary  Apple Computer, Inc. July 2000

12 Glossary

abstract type Defines, in information
property lists, general characteristics of a
family of documents. Each abstract type has
corresponding concrete types. See also
concrete type.

address space Describes the range of
memory (both physical and virtual) that a
process uses while running. In Mac OS X,
processes do not share address space.

alias A lightweight reference to files and
folders in Mac OS Standard (HFS) and Mac
OS Extended (HFS+) file systems. An alias
allows multiple references to files and folders
without requiring multiple copies of these
items. Aliases are not as fragile as symbolic
links because they identify the volume and
location on disk of a referenced file or folder;
the referenced file or folder can be moved
around without breaking the alias. See also
symbolic link.

Apple event A high-level
operating-system event that conforms to the
Apple Event Interprocess Messaging
Protocol (AEIMP). An Apple event typically
consists of a message from an application to
itself or to another application.

AppleTalk A suite of network protocols
that is standard on Macintosh computers and
can be integrated with other network
systems, such as the Internet.

Application Kit A Cocoa framework that
implements an application’s user interface.
The Application Kit provides a basic
program structure for applications that draw
on the screen and respond to events.

ASCII American Standard Code for
Information Interchange. A 7-bit character
set (commonly represented using 8-bits) that
defines 128 unique character codes. See also
Unicode.

BSD Berkeley Software Distribution.
Formerly known as the Berkeley version of
UNIX, BSD is now simply called the BSD
operating system. The BSD portion of Mac
OS X is based on 4.4BSD Lite 2 and FreeBSD,
a “flavor” of 4.4BSD.

buffered window A window with a
memory buffer into which all drawing is
rendered. All graphics are first drawn in the
buffer, then the buffer is flushed to the
screen.

bundle A directory in the file system that
stores executable code and the software
resources related to that code. Applications,
plug-ins, and frameworks are types of
bundles. Except for frameworks, bundles are
file packages, presented by the Finder as a
single file.

G L O S S A R Y

182
Preliminary  Apple Computer, Inc. July 2000

Carbon An application environment on
Mac OS X that features a set of programming
interfaces derived from earlier versions of the
Mac OS. The Carbon APIs have been
modified to work properly with Mac OS X,
especially with the foundation of the
operating system, the kernel environment.
Carbon applications can run on Mac OS X,
Mac OS 9, and all versions of Mac OS 8 later
than Mac OS 8.1.

CFM Code Fragment Manager, the library
manager and code loader for processes based
on PEF object files (Carbon).

class In object-oriented languages such as
Java and Objective-C, a prototype for a
particular kind of object. A class definition
declares instance variables and defines
methods for all members of the class. Objects
that have the same types of instance variables
and have access to the same methods belong
to the same class.

Classic An application environment on
Mac OS X that lets you run non-Carbon
legacy Mac OS software. It supports
programs built for both Power PC and 68k
chip architectures and is fully integrated with
the Finder and the other application
environments.

Cocoa An advanced object-oriented
development platform on Mac OS X. Cocoa is
a set of frameworks with programming
interfaces in both Java and Objective-C. It is
based on the integration of OPENSTEP,
Apple technologies, and Java.

compositing A method of overlaying
separately rendered images into a final
image. It encompasses simple copying as
well as more sophisticated operations that
take advantage of transparency.

cooperative multitasking A multitasking
environment in which a running program
can receive processing time only if other
programs allow it; each application must
give up control of the processor
“cooperatively” in order to allow others to
run. Mac OS 8 and 9 are cooperative
multitasking environments. See also
preemptive multitasking.

Darwin Another name for the Mac OS X
core operating system. The Darwin kernel is
equivalent to the Mac OS X kernel plus the
BSD libraries and commands essential to the
BSD Commands environment. Darwin is
Open Source technology.

demand paging An operating system
facility that causes pages of data to be
brought from disk into physical memory
only as they are needed.

device driver A component of an operating
system that deals with getting data to and
from a device, as well as the control of that
device.

DVD Digital Versatile Disc or Digital
Video Disc. An optical storage medium that
provides greater capacity and bandwidth
than CD-ROM; DVDs are frequently used for
multimedia as well as data storage.

dyld Dynamic link editor. The library
manager for processes based on Mach-O
object files.

G L O S S A R Y

183
Preliminary  Apple Computer, Inc. July 2000

dynamic shared library A library whose
code can be shared by multiple, concurrently
running programs. Programs share exactly
one physical copy of the library code and do
not require their own copies of that code.
With dynamic shared libraries, a program
not only attempts to resolve all undefined
symbols at runtime, but attempts to do so
only when those symbols are referenced
during program execution.

Ethernet A high-speed local area network
technology.

exception An interruption to the normal
flow of program control caused by the
program itself.

file package A folder that the Finder
presents to users as if it were a file. In other
words, the Finder hides the contents of the
folder from users. This opacity discourages
users from inadvertently (or intentionally)
altering the contents of the bundle

firewall Software (or a computer running
such software) that prevents unauthorized
access to a network, by users outside of the
network. (A physical firewall prevents the
spread of fire between two physical
locations; the software analog prevents the
spread of unauthorized data).

fork A stream of data that can be opened
and accessed individually under a common
filename. The Mac Standard and Extended
file systems store a separate “data” fork and
a “resource” fork as part of every file; data in
each fork can be accessed and manipulated
independently of the other. In BSD, fork is a
system call that creates a new process.

framework A type of bundle that packages
a dynamic shared library with the resources
that the library requires, including header
files and reference documentation.

HFS Hierarchical File System. The Mac OS
Standard file-system format, used to
represent a collection of files as a hierarchy of
directories (folders), each of which may
contain either files or folders themselves.
HFS is a two-fork volume format.

HFS+ Hierarchical File System Plus. The
Mac OS Extended file system format. This
file-system format was introduced as part of
Mac OS 8.1, adding support for file names
longer than 31 characters, Unicode
representation of file and directory names,
and efficient operation on very large disks.
HFS+ is a multiple-fork volume format.

host The computer that’s running (is host
to) a particular program. The term is usually
used to refer to a computer on a network.

information property list A property list
that contains essential configuration
information for bundles. A file named
Info.plist (or a platform-specific variant of
that filename) contains the information
property list and is packaged inside the
bundle.

inheritance In object-oriented
programming, the ability of a superclass to
pass its characteristics (methods and instance
variables) on to its subclasses.

G L O S S A R Y

184
Preliminary  Apple Computer, Inc. July 2000

internationalization The design or
modification of a software product,
including online help and documentation, to
facilitate localization. Internationalization of
software typically involves writing or
modifying code to make use of locale-aware
operating-system services for appropriate
localized text input, display, formatting, and
manipulation. See also localization.

instance In object-oriented languages such
as Java and Objective-C, an object that
belongs to (is a member of) a particular class.
Instances are created at runtime according to
the specification in the class definition.

kernel The complete Mac OS X core
operating-system environment which
includes Mach, BSD, the I/O Kit, file systems,
and networking components. Also called the
kernel environment.

key An arbitrary value (usually a string)
used to locate a datum in a data structure
such as a dictionary.

localization The adaptation of a software
product, including online help and
documentation, for use in one or more
regions of the world, in addition to the region
for which the original product was created.
Localization of software can include
translation of user-interface text, resizing of
text-related graphical elements, and
replacement or modification of user-interface
images and sound. See also
internationalization.

Mach The lowest level of the Mac OS X
kernel. Mach provides such basic services
and abstractions as threads, tasks, ports,
interprocess communicaiton (IPC),
scheduling, physical and virtual address
space management, virtual memory, and
timers.

Mach-O Mach object file format.

main thread By default, a process has one
thread, the main thread. If a process has
multiple threads, the main thread is the first
thread in the process. A user process can use
the POSIX thread APIs to create other user
threads.

major version A framework version
specifier designating a framework that is
incompatible with programs linked with a
previous version of the framework’s
dynamic shared library.

makefile A specification file used by the
program make to build an executable version
of an application. A makefile details the files,
dependencies, and rules by which the
application is built.

memory protection A system of memory
management in which programs are
prevented from being able to modify or
corrupt the memory partition of another
program. Mac OS 8 and 9 do not have
memory protection; Mac OS X does.

G L O S S A R Y

185
Preliminary  Apple Computer, Inc. July 2000

memory-mapped files A facility that maps
virtual memory onto a physical file.
Thereafter, any access to that part of virtual
memory causes the corresponding page of
the physical file to be accessed. The contents
of the file can be changed by changing the
contents in the memory.

method In object-oriented programming, a
procedure that can be executed by an object.

minor version A framework version
specifier designating a framework that is
compatible with programs linked with later
builds of the framework within the same
major version.

multicast A process in which a single
network packet may be addressed to
multiple recipients. Multicast is used, for
example, in streaming video, in which many
megabytes of data are sent over the network.

multihoming The ability to have multiple
network addresses in one computer. For
example, multihoming might be used to
create a system in which one address is used
to talk to hosts outside a firewall and the
other to talk to hosts inside; the computer
provides facilities for passing information
between the two.

multitasking The concurrent execution of
multiple programs. Mac OS X uses
preemptive multitasking. Mac OS 8 and 9 use
cooperative multitasking.

network A group of hosts that can directly
communicate with each other.

NFS Network File System. An NFS file
server allows users on the network to share
files on other hosts as if they were on their
own local disks.

Open Transport Open Transport is a
communications architecture for
implementing network protocols and other
communication features on computers
running the Mac OS. Open Transport
provides a set of programming interfaces
that supports, among other things, both the
AppleTalk and TCP/IP protocols.

Open Source A definition of software
which includes freely available access to
source code, redistribution, modification,
and derived works. The full definition is
available at www.opensource.org.

nonretained window A window without
an off-screen buffer for screen pixel values.

object A programming unit that groups
together a data structure (instance variables)
and the operations (methods) that can use or
affect that data. Objects are the principal
building blocks of object-oriented programs.

physical address An address to which a
hardware device, such as a memory chip, can
directly respond. Programs, including the
Mach kernel, use virtual addresses that are
translated to physical addresses by mapping
hardware controlled by the Mach kernel.

pixel The basic logical unit of
programmable color on a computer display
or in a computer image. The physical size of
a pixel depends on the resolution of the
display screen.

G L O S S A R Y

186
Preliminary  Apple Computer, Inc. July 2000

PEF Preferred Executable Format. An
executable format understood by the Code
Fragment Manager.

POSIX The Portable Operating System
Interface. An operating-system interface
standardization effort supported by ISO/
IEC, IEEE, and The Open Group.

port In Mach, a secure unidirectional
channel for communication between tasks
running on a single system. In IP transport
protocols, an integer identifier used to select
a receiver for an incoming packet or to
specify the sender of an outgoing packet.

preemptive multitasking A type of
multitasking in which the operating system
can interrupt a currently running task in
order to run another task, as needed. See also
cooperative multitasking.

preemption The act of interrupting a
currently running task in order to give time
to another task.

process A BSD abstraction for a running
program. A process’ resources include a
virtual address space, threads, and file
descriptors. In Mac OS X, a process is based
on one Mach task and one or more Mach
threads.

property list A structured, textual
representation of data that uses the
Extensible Markup Language (XML) as the
structuring medium. Elements of a property
list represent data of certain types, such as
arrays, dictionaries, and strings.

Pthreads POSIX Threads package (BSD).

RAM Random-access memory. Memory
that a microprocessor can either read or write
to.

real time In reference to operating systems,
a guarantee of a certain capability within a
specified time constraint, thus permitting
predictable, time-critical behavior. If the user
defines or initiates an event and the event
occurs instantaneously, the computer is said
to be operating in real time. Real-time
support is especially important for
multimedia applications.

retained window A window with an
off-screen buffer for screen pixel values.
Images are rendered into the buffer for any
portions of the window that aren’t visible
onscreen.

role An identifier of an application’s
relation to a document type. There are three
roles: Editor (reads and modifies), Viewer
(can only read), and None (declares
information about type). You specify
document roles in an application’s
information property list.

ROM Read-only memory, that is, memory
that cannot be written to.

SCSI Small Computer Systems Interface. A
standard connector and communications
protocol used for connecting devices such as
disk drives to computers.

scheduling The determination of when
each process or task runs, including
assignment of start times.

G L O S S A R Y

187
Preliminary  Apple Computer, Inc. July 2000

SMP Symmetric multiprocessing. A
feature of an operating system in which two
or more processors are managed by one
kernel, sharing the same memory, having
equal access to I/O devices, and in which any
task, including kernel tasks, can run on any
processor.

socket In BSD-derived systems, a socket
refers to different entities in user and kernel
operation. For a user process, a socket is a file
descriptor that has been allocated using
socket(2). For the kernel, a socket is the data
structure that is allocated when the kernel’s
implementation of the socket(2) call is made.
In AppleTalk protocols, a socket serves the
same purpose as a “port” in IP transport
protocols.

subframework A public framework that
packages a specific Apple technology, such
as Apple events or Open Transport. Through
various mechanisms, Apple prevents or
discourages developers from including or
directly linking with subframeworks. See
also umbrella framework.

symbolic link A lightweight reference to
files and folders in UFS file systems. A
symbolic link allows multiple references to
files and folders without requiring multiple
copies of these items. Symbolic links are
fragile because if what they refer to moves
somewhere else in the file system, the link
breaks. However, they are useful in cases
where the location of the referenced file or
folder will not change. See also alias.

system framework A framework
developed by Apple and installed in the
file-system location for system software.

task A Mach abstraction, consisting of a
virtual address space and a port name space.
A task itself performs no computation;
rather, it is the framework in which threads
run. See also thread.

thread In Mach, the unit of CPU utilization.
A thread consists of a program counter, a set
of registers, and a stack pointer. See also task.

thread-safe code Code that can be used
safely by several threads simultaneously.

TCP/IP Transmission Control Protocol/
Internet Protocol. An industry standard
protocol used to deliver messages between
computers over the network. TCP/IP
support is included in Mac OS X.

transformation An alteration to a
coordinate system that defines a new
coordinate system. Standard transformations
include rotation, scaling, and translation. A
transformation is represented by a matrix.

umbrella framework A system framework
that includes and links with constituent
subframeworks and other public
frameworks. An umbrella framework
“contains” the system software defining an
application environment or a layer of system
software. See also subframework.

UFS UNIX file system. An industry
standard file-system format used in
UNIX-like operating systems such as BSD.
UFS in Mac OS X is a derivative of 4.4BSD
UFS. Specifically, its disk layout is not
compatible with other BSD UFS
implementations.

G L O S S A R Y

188
Preliminary  Apple Computer, Inc. July 2000

UDF Universal Disk Format. The
file-system format used in DVD disks.

Unicode A 16-bit character set that assigns
unique character codes to characters in a
wide range of languages. Unlike ASCII,
which defines 128 distinct characters
typically represented in 8 bits, there are as
many as 65,536 distinct Unicode characters
that represent the unique characters used in
many languages.

versioning With frameworks, schemes to
implement backward and forward
compatibility of frameworks. Versioning
information is written into a framework’s
dynamic shared library and is also reflected
in the internal structure of a framework. See
also major version, minor version.

virtual address An address that is usable
by software. Each task has its own range of
virtual addresses, which begins at address
zero. The Mach operating system makes the
CPU hardware map these addresses onto
physical memory only when necessary,
using disk memory at other times. See also
physical address.

VFS Virtual File System. A set of standard
internal file-system interfaces and utilities
that facilitate support for additional file
systems. VFS provides an infrastructure for
file systems built in the kernel.

virtual memory (VM) The use of a disk
partition or a file on disk to provide the same
facilities usually provided by RAM. The
virtual-memory manger on Mac OS X
provides 32-bit (minimum) protected
address space for each task and facilitates
efficient sharing of that address space.

189
Preliminary © Apple Computer, Inc. July 2000

Index

A

acceleration
2D graphics 30

address space 25, 172
ADSP 37
advanced virtual memory 25
AFP 29
Airport 35, 39
alias

definition 140
anti-aliasing 30, 56
Apache 38
Apple event 23, 70, 175
Apple Help 99
Apple Type Solution 34
AppleScript 23, 152, 175
AppleTalk 37, 70
application 83, 91

and plug-ins 97
and private frameworks 94
and resource fork 141
and shared frameworks 95
and the Finder 151
extensibility 22
help 99
helper 96
main bundle 84
packaging 20, 91
preferences 100

application database 148
application environment 20, 41, 146
Application Kit 50, 51, 52
Application Services 41, 45
Aqua 15, 17, 146
architecture 41, 43

Java environment 53
assistant 96
ATP/ASP 37

ATS
see Apple Type Solution

AWT 52

B

Base Services 68
bit depth 30
BOOTP 36
BSD 26, 46

interprocess communication 176
BSD Commands environment 44
bundle 21

and property list 156
and resources 77, 80
application 91
benefits 76, 92
definition 75
information property list 156
loadable 84
search algorithm 86
structure 77
types 75, 83
versioned 77, 82

bundle bit 82
Bundle Services 68
bytecode compiler 52

C

Carbon 15, 20, 44, 48
and resources 48
core managers 66
documentation 50
event handling 73

I N D E X

190
Preliminary © Apple Computer, Inc. July 2000

Carbon (continued)
general changes from Mac OS 9 49
hardware interfaces 48
memory management 48
new managers 48
replacement managers 49

Carbon Event Manager 65, 72
Carbon Process Manager 172
CD-ROM 28
central directory 95
chip architectures 76
Classic 15, 20, 44, 146
Cocoa 15, 20, 44, 50, 52

event handling 73
Collection Services 69
column view 19
compiler

JIT bytecode 52
compositing 57
configuring software 155
converter 62
cooperative multitasking 25
cooperative threading 25
coordinate system 57
copy operation 152
Core Foundation 67
Core Graphics Rendering 30, 54, 57
Core Graphics Services 30, 54, 56
Core Services 42, 45, 53, 56, 65

D

Darwin 15, 24
data fork 141
Desktop application 145
Desktop Folder 149
device driver 46

I/O Kit 26
DHCP 36
display independence 57
distributed notification 69, 176
distributed notifications 176
DNS 36

Dock 18
document

abstract type 157
and resource fork 144
and the Finder 152
concrete type 157
resources 100
role 158

document configuration 157
DVD 28
dynamic linking 84

E

Ethernet 35
event

handling 65, 73
low-level 72

event port 72
event queue 72
EventRefs 73
executable

and bundles 76

F

file operations 152
file package 82, 92
file systems 27, 47
Finder 19, 145

and aliases 153
and applications 93
and bundles 82
and resource fork 153
and symbolic links 153
application database 148
bundle configuration 163
copying files 152
handling applications 151
handling documents 152

Finder attributes 150

I N D E X

191
Preliminary © Apple Computer, Inc. July 2000

FireWire 39
Foundation 50, 52
frame buffer 30
framework 83, 84, 93

and applications 93
definition 118
in bundles 81
including 121
linking against 121
private 81, 94, 118
public 118
shared 95
subframework 119
types of 118
umbrella 117, 119

FTP 36

G

graphics and windowing environment 54

H

hardware interfaces
and Carbon 48
and I/O Kit 46

Help 76
help 99
Help Viewer 99
helper application 96
HFS 28, 146
HFS+ 28, 146
HTTP 36

I

I/O Kit 26, 46, 56, 72
I/O module 62
IDE 38
IEEE 1394 39

Info.plist 78
see information property list 78

InfoPlist.strings 157
information property list 148, 155, 156

and Finder 147
Finder keys 163
standard keys 161

installation 24
internationalization 21, 76, 85
Internet 24
interprocess communication 175
IP 35, 70
IP aliasing 37
IP routing 37
IPC 72
ISO 3166 85
ISO 639 85
ISO 9660 28, 47

J

Java 44, 50, 51, 52
application framework 52
architecture 53
basic packages 52
event handling 73
runtime 52
tools 52

java.lang.Thread 174
JDirect 52
JNI 52
Job Manager 62
job ticket 62

K

kernel environment 42, 45, 173
keyboard focus 65

I N D E X

192
Preliminary © Apple Computer, Inc. July 2000

L

layered compositing 57
layers of system software 43
LDAP 36
loadable bundle 83, 84, 97
localization 92
localized resource 22, 85
localized strings 86

M

Mac OS Extended 28, 47, 146
Mac OS Standard 28, 47, 146
Mach 24, 46

messaging 176
thread 173

memory
and Carbon 48
protection 45

minimum resolution 30
move operation 152
multihoming 37
multiple users 146
Multiprocessing Services 172, 173

N

NetInfo 21
Network Kernel Extensions 27
network protocol stack 34
networking 27, 47
NFS 29, 47
NKE

See Network Kernel Extensions 47
notification

distributed 69, 176
Notification Services 69
NSEvent 73
NSTask 172

NSThread 174
NTP 36

O

Objective-C 50
opaque types 68
Open Source 29
Open Transport 37, 70
OpenGL 15, 32, 55

P

palette 83
PAP 35
pasteboard 65
PBM

See printer browser module 62
PDE

See printing dialog extensions 62
PDF 30, 31, 57
Personal Web Sharing 37
PJC

See Print Job Creator 62
PkgInfo.
plug-in 83, 97
Plug-in Services 68
port 46
Portable Document Format

See PDF 57
POSIX threads 173
PostScript 30, 58

printers 33
PPP 35
preemptive multitasking 25, 45
preemptive thread 172
preemptive threading 25
Preference Services 69
Preferences 155
preferences 100, 166
Print Center 33, 62

I N D E X

193
Preliminary © Apple Computer, Inc. July 2000

Print Job Creator 62
print preview 33
print spooling 33
PrintCenter 60
printer browser module 62
printer discovery 63
printer module 62
printing 58, 59
printing dialog extensions 62
printing system 33

architecture 60
converter 62
data flow 63
I/O module 62
Job Manager 62
job ticket 62
Print Center 62
Print Job Creator 62
printer browser module 62
printer discovery 63
printer module 62
printing dialog extensions 62
Queue Manager 62
user interface 59

private framework 118
PrivateFrameworks folder 118
process 64, 171

BSD 172
Process Manager 64
property list 69, 155
Property List Services 69
protected memory 25
pthreads

SeePOSIX threads
public framework 118

Q

Quartz 15, 30, 39, 54, 55
Queue Manager 62
QuickDraw 31, 39, 58
QuickTime 15, 32, 39, 45, 52, 55

QuickTime for Java 52
quotas 29

R

raster printers 33
real-time support 25
resource fork

and Finder 153
and Mac OS X 141

resources
in bundles 77, 80
localizing 85

RTP 32
RTSP 32
run loop 72
Run Loop Services 69

S

scripting 23
SCSI 38
searching for resources 86
serial 35
Services menu 23
shared library 93
Sherlock 24, 76
Single Window Mode 17
SLP 36
software configuration 155
String Services 68
strings

localized 86
subframework 119

linking restrictions 124
Swing 52
symbolic link

definition 140
symmetric multiprocessing 45, 172
System framework 44, 173

I N D E X

194
Preliminary © Apple Computer, Inc. July 2000

system software
layers 43

T

task 171
Mach 46, 171

TCP/IP 35, 70
thread 171

definition 172
layering of packages 174
Mach 46
scheduling 172

Thread Manager 174
Thread Packages 172
tool 96
translucency 56

U

UDF 28
UDP/IP 35
UFS 28, 47
umbrella

including 121
linking against 121

umbrella framework 47, 117, 119
including 121
linking against 121
memory footprint 122
purpose 119
structure 122

URL Services 69
USB 38
user interface 17
Utility Services 69

V

vector information 57
Velocity Engine 30, 39
VFS 47

SeeVirtual File System
Virtual File System 27, 46, 47
virtual machine 51, 52
virtual memory 45
VM

Seevirtual machine 51
volume format 146

W

window
active 65
composition 56

window server 56
event queue 72

wireless 35

X, Y, Z

XML 155
XML Parser 69

	System Overview
	Contents
	About This Book
	Why Read This Book
	Further Investigations
	Installed Developer Documentation
	Other Apple Publications
	Information on BSD
	Other Information on the Web

	System Technologies
	The User Experience
	Aqua
	The Desktop and the Finder
	Application Support
	Multiple Users
	Internationalization
	Application Extensibility
	Exported Application Services
	Other Parts of the User Experience

	Darwin
	Mach
	BSD
	Device-Driver Support
	Networking Extensions
	File Systems
	Darwin and Open Source Development

	Graphics and Imaging
	Quartz
	QuickDraw
	OpenGL
	QuickTime
	Printing
	Apple Type Solution

	Networking and the Internet
	Media Types
	Standard Protocols
	Legacy Network Services and Protocols
	Routing and Multihoming
	Personal File and Web Services

	Advanced Hardware Features
	USB
	FireWire
	Velocity Engine
	Airport

	System Architecture
	A Layered Perspective
	Application Environments
	Carbon
	Cocoa
	Java

	The Graphics and Windowing Environment
	Core Graphics Services
	Core Graphics Rendering

	printing
	printing system:user interface
	printing system:architecture
	printing system:printer discovery;printer discovery
	The

	Other Application Services
	Process Manager
	Carbon Event Manager
	The Pasteboard

	Core Services
	Carbon Managers
	Core Foundation
	Apple Events
	Open Transport

	Tracking a User Event

	Bundles
	Benefits of Using Bundles
	Anatomy of a Bundle
	The Finder and Bundles
	Types of Bundles
	An
	framework
	loadable bundle;bundle:loadable;dynamic linking

	Localized Resources
	Localized Character Strings
	Search Algorithm
	Bundles and the Resource Manager

	Application Packaging
	An Application Is a Bundle
	Application Frameworks, Libraries, and Helpers
	Private Frameworks
	Shared Frameworks and the Central Directory
	Other Shared Application Code

	Applications and Loadable Bundles
	User Resources in Applications
	Help Application
	Application Preferences
	Document Resources

	Frameworks
	The Framework as a Library Package
	The Internal Structure of Frameworks
	Standard Locations for Frameworks

	Dynamic Shared Libraries
	Framework Versioning
	Major Versions
	Minor Versions
	Versioning Summary and Guidelines
	Guidelines for Major Versioning

	Umbrella Frameworks
	Kinds of Frameworks
	The Purpose of Umbrella Frameworks
	Linking and Including Guideline
	The Structure of an Umbrella Framework
	Restrictions on Subframework Linking

	The File System
	How the File System Is Organized
	File-System Domains
	The System and Local Domains
	The User Domain
	The Network Domain
	The Library Folder
	The Developer Folder
	Searching Within the File-System Domains

	Differences Between HFS+ and UFS
	Aliases and Symbolic Links
	Resource Forks

	The Desktop
	The Role of the Desktop
	Desktop Interfaces to Applications
	Information Property Lists

	Information Stored by the Desktop
	Collecting Application Information
	The Desktop Folder
	Finder Attributes

	The Handling of Applications and Documents
	The Finder and File Operations
	Copy and Move Operations
	Management of Aliases and Symbolic Links

	Software Configuration
	Property Lists
	Information Property List
	Document Configuration
	An Example
	Standard Keys
	Finder Keys
	Application Package Keys

	The Preferences System
	How Preferences Are Stored
	Preference Domains
	The defaults Utility

	Inter-Environment Issues
	Tasks and Processes
	Thread Packages
	Layering Details
	Usage Guidelines

	Interprocess Communication
	Library Managers and Executable Formats
	Comparing the Runtime Environments
	CFM and dyld
	PEF and Mach-O
	Code-Generation Models

	Vector Libraries
	CFM Executable and Non-Carbon APIs
	Should You Use CFM or dyld?

	Glossary
	Index

