SS9JIYO0ol

)

(<]
c
(@)
c
(<b]

overview

Technical

UOISIaA

()
7))
©
®)
©
)
©
™)
)
(@]
()
®)
o
N

cross-platform

neoAccess™

Technical Overview
Version 5.0

Cross-Platform
Object Database
Engine

NeoLogic Systems, Inc.
" = 1450 Fourth Street, Suite 12
Berkeley, CA 94710

Vox: (510) 524-5897

Fax: (510) 524-4501
Email: neologic@neologic.com
c Web: http://www.neologic.com

eoclogic

NeoA ccess Technical Overview, Version 5.0
By Bob Krause, Heidi Langius, Joel VanderWerf and Alexander Vladimirsky

Special thanks to Richard Aurbach, David Bienvenu, Brian Blackman, Jean-Francois
Brouillet, Jeff Hokit, Suresh Kumar, Paul Ossenbruggen, Peter Reeves, Scott Ribe, Mike
Rockwell, Reede Stockton, Jeff Winkler and the thousands of other devel opers who have
generously given ustheir criticism and praise. NeoAccess would not be the rich and robust
tool that it is without their input and support.

Bob Krause would also like to offer his warm thanks to his family, Marc Bernstein, Chris
Buehler, Tim Duane, Rick Hoskins, Robert Inchausti, Philip Kaake, Cindy Lee, Todd
Logan, Theresa McGlashan, Tricia Parrish, Lisa Piercey, Tim Standing, Larry Zulch, and
Laura Zulch for their support and encouragement.

Copyright © 1992-1997 NeoL ogic Systems, Inc.
All Rights Reserved. Printed in U.S.A.

NeoL ogic, NeoAccess and NeoShare are registered trademarks of NeoL ogic Systems, Inc.

The NeoAccess Technical Overview is copyrighted and all rights reserved. Information in
this document is subject to change without notice and does not represent acommitment on
the part of NeoL ogic Systems, Inc. The software described in this document is furnished
under alicense agreement. The document may not, in whole or in part, be copied, photo-
copied, reproduced, tranglated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from NeoL ogic Systems, Inc.

NEOLOGIC SYSTEMS, INC. MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED,
REGARDING THE ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY, OR
ITS FITNESS FOR ANY PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS
NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS
WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS
THAT YOU MAY HAVE WHICH VARY FROM STATE TO STATE.

NeoAccess Technical Overview

NeoL ogic Systems, Inc.
NeoAccess Developer's Tool kit
Software License Agreement and
Limited Warranty

PLEASEREAD THISLICENSE CAREFULLY.THISISA LEGAL AGREEMENT BETWEEN THE END
USER (“LICENSEE") AND NEOLOGIC SYSTEMS, INC. (“NEOLOGIC"). THE ENCLOSED
SOFTWARE AND DOCUMENTATION ARE LICENSED BY NEOLOGIC TO THE ORIGINAL
INDIVIDUAL CUSTOMER FOR USE ONLY ON THE TERMS DESCRIBED IN THIS LICENSE
AGREEMENT (THIS*LICENSE”). OPENING THE ENCLOSED DISKETTE ENVELOPE AND/OR
USING THE SOFTWARE INDICATESTHAT THE END USERACCEPTSAND AGREESTO COMPLY
WITH THESE TERMS. IF THERE ISANY DISAGREEMENT ON THESE TERMS, (A) THE
SOFTWARE MAY BE BE RETURNED IN THE UNOPENED DISKETTE ENVELOPE TO THE PLACE
WHERE IT WASOBTAINED FOR A FULL REFUND, OR (B) WRITE TO NEOLOGIC WITH A
REQUEST TO MODIFY ANY TERM OF THISLICENSE. PLEASE ALLOW 6 WEEKS FOR A
RESPONSE.

1. DEFINITIONS.

(a) “NeoAccess Source Code” shall mean the source code and building blocks contained within the

NeoA ccess Developer's Toolkit (“Toolkit”) and any future versions and derivatives developed by Neol ogic
and supplied to Licensee hereunder.

(b) “NeoAccess Object Code” shall mean object code either resulting from the compilation of NeoAccess
Source Code or included as object code in the Toolkit.

(c) “Licensee Program(s)” shall mean Licensee's own computer software end-user application programs
resulting from the compilation of its source code with NeoAccess Source Code. It is expressly understood
and agreed that Licensee Program(s) shall contain substantial added value over and above that which is
contained in the Software. Licensee Program(s) may not, in any event, consist of or include a programmatic
interface, software developer tools or development environments.

(d) “ Software” shall mean NeoA ccess Source Code, NeoA ccess Object Code and related documentation,
whether printed, on disk or contained in any other medium.

2. LICENSES.

(a) NeoL ogic hereby grantsto Licensee a personal, worldwide, non-exclusive, non-transferable, license
(without the ability to sublicense) to (i) use, modify and compile NeoA ccess Source Code included in the
Toolkit for the devel opment and testing of Licensee Programs, and (ii) use and distribute NeoA ccess Object
Code solely as part of Licensee Program(s).

(b) NeoL ogic retains title to the Software in all forms whatsoever. This License alows Licensee to use the
Software on asingle CPU and make one copy of the Software in machine-readable form for backup purposes.
(c) All rights not expressly granted herein are reserved by NeolL ogic.

(d) For the sole purpose of monitoring Licensee’ s compliance with the terms hereof, Licensee shall upon
request deliver a copy of Licensee Program(s) to NeoL ogic.

3. LABELING.
(a) Licensee shall include conspicuously in the manuals, in Licensee Program(s) “About Box”, and on each
copy of Licensee Program(s), a copyright notice as follows:

“This Program was developed using NeoAccess : © 1992-1997 NeoL ogic Systems, Inc.”

(b) Licensee shall asoincludein aconspicuous placein association with the Licensee Program(s), preferably
in the manual, awarranty disclaimer as follows:

“The NeoAccess softwar e contained within this program isproprietary to NeoL ogic Systems, Inc.
and islicensed to (Licensee Name) for distribution only for usein combination with the (Licensee
Programs). NeoL ogic Systems, I nc. makes no warranties whatsoever, expressed or implied,
regarding this product, including warrantieswith respect to its merchantability or itsfitnessfor
any particular purpose.”

(c) NeoL ogic may, during theterm of this Agreement, requirerevisionsor additionsto the noticesto be placed
in the manuals, including the copyright notice and the warranty disclaimer notice. Licensee shall incorporate
such revisions or additions to the notices required herein, in al future printings or versions of Licensee

NeoAccess Technical Overview i

Program(s), but in no event shall such revisions or additions occur later than 180 days following written
notice from NeoL ogic.

4. SUPPORT. Provided that Licensee hasreturned to NeoL ogicits product registration card fully filled out,
NeoL ogic shall supply Licensee with onlinetechnical support in the use of the Software for aperiod of thirty
(30) days from date of acquisition of the Software. Application-specific support and support requested after
the expiration of theinitial thirty (30) day period may be provided, at the option of NeoL ogic, at NeoLogic’s
then current standard hourly rates.

5. LICENSE FEES. Thislicense shall haveno forceor effect unlessand until Licensee shall have submitted
to NeoL ogic all applicable licensefeesin full. All such fees are exclusive of any taxes, duties, licenses, fees,
excises or tariffs now or hereafter imposed on Licensee's production, licensing, sale, transportation, import,
export or use of the Software or Licensee Programs, al of which shall be the responsibility of Licensee, other
than taxes attributable to NeoL ogic' s net income.

6. CONFIDENTIALITY. By accepting this License, the end user acknowledge that the Software consists
of information which is of aconfidential and proprietary nature. Such information includes, but isnot limited
to know-how, techniques, processes, programs, source code, data and other trade secrets (“ Proprietary
Information™). NeoL ogic owns and intendsto maintain its ownership of all such Proprietary Information. The
end user shall at al times, both during the term of this License and thereafter, maintain in the strictest
confidence and trust all such Proprietary Information, and shall not use such Proprietary Information other
than as authorized under this Agreement, nor shall the end user disclose any of such Proprietary Information
to any third party without the express prior written consent of NeoL ogic.

7. LIMITED WARRANTY.

(a) NeoL ogic warrants that for one (1) year following delivery of the Software to Licensee, the Software,
unless modified in any way by Licensee, will perform substantially the functions described in any associated
product documentation provided by NeolL ogic. NeoL ogic does not warrant that the Software will meet
Licensee’s specific requirements or that operation of the Software will be uninterrupted or error-free.

NeoL ogic is not responsible for any problem, including any problem which would otherwise be a breach of
warranty, caused by (i) changesin the operating characteristics of computer hardware or computer operating
systems which are made after delivery of the Product, (ii) interaction of the Software with software not
supplied or approved by NeoL ogic, or (iii) accident, abuse, or misapplication.

(b) NeoL ogic'sentire liability and Licensee’ s sole remedy under the foregoing warranty during the warranty
period isthat NeoL ogic shal, at its sole and exclusive option, either use reasonable efforts to correct any
reported deviation from the relevant product documentation, replace the Software with afunctionally
equivalent program, or refund all license fees paid, in which case, this License shall immediately terminate.
Any repaired or replaced Software will be rewarranted for an additional ninety (90) day period, unless
subsequently modified by Licensee.

(c) THEABOVE WARRANTIESARE EXCLUSIVE AND NO OTHER WARRANTIESARE MADE BY
NEOLOGIC OR ITS LICENSORS, WHETHER EXPRESSED OR IMPLIED, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT.

(d) SOME STATESDO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY. IN THAT EVENT, ANY IMPLIED WARRANTIES ARE
LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF DELIVERY OF THE
SOFTWARE. THISWARRANTY GIVES THE END USER SPECIFIC LEGAL RIGHTS. THE END
USER MAY HAVE OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

8. LIMITATION OF LIABILITY. UNDER NO CIRCUMSTANCES SHALL NEOLOGIC BE LIABLE
FOR ANY INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES, EVEN IF NEOLOGIC HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW
THELIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

In no event shall NeoL ogic'stotal liability to Licenseefor all damages, losses, and causes of action (whether
in contract, tort (including negligence) or otherwise) exceed the amount paid by Licensee for the Software.

9. BREACH AND TERMINATION.

(8 ThisLicenseis effective until terminated. This License may be terminated by the non-defaulting party if
either party materialy fails to perform or comply with this License or any provision hereof.

(b) Termination dueto abreach of Section 6 shall be effective upon notice. In all other casestermination shall

NeoAccess Technical Overview

be effective thirty (30) days after notice of termination to the defaulting party if the defaults have not been
cured within such thirty (30) day period. The rights and remedies of the parties provided herein shall not be
exclusive and are in addition to any other rights and remedies provided by law or this Agreement.

(c) Upon termination of this Agreement, all rightsand licenses granted hereunder shall immediately terminate
and all Software and other Proprietary Information of NeoL ogic in the possession of Licensee or under its
control, shall be immediately returned to NeoL ogic. End user licenses properly granted pursuant to this
Agreement and prior to termination of this Agreement shall not be diminished or abridged by the termination
of this Agreement.

10. GOVERNING LAW. Therights and obligations under this Agreement shall be governed by the laws of
the State of California excluding its conflicts of law rules and United States law and international treaties
governing copyrights.

11. EXPORT LAW ASSURANCES. Licensee agrees and certifies that neither the Software nor any other
technical datareceived from NeoLogic, not any direct product thereof, will be exported outside the United
States, except as permitted by the laws and regulations of the United States.

12. GOVERNMENT END USERS.

(a) If this Software is acquired by or on behalf of a unit or agency of the United States Government through
Licensee, Licensee hereby undertakesto insert in its contract with the Government the appropriate restricted
rights language.

(b) If this Softwareis acquired by or on behalf of aunit or agency of the United States Government directly
from NeoL ogic, this provision applies. This Software: (i) was developed at private expense, and no part of it
was devel oped with government funds; (ii) is atrade secret of NeoL ogic for all purposes of the Freedom of
Information Act; (iii) is“commercial computer software” subject to limited utilization as provided in the
contract between vendor and the government entity; and (iv) in all respectsis proprietary data belonging
solely to NeoL ogic.

(c) For units of the Department of Defense (DOD), this Software is sold only with “ Restricted Rights” asthat
term is defined in the DOD Supplement to the Federal Acquisition Regulations (“DFARS’) 52.227-7013
(c)(2)(ii) and use, duplication or disclosure is subject to restrictions as set forth in subparagraph (c)(2)(ii) of
the Rightsin Technical Data and Computer Software clause of DFARS 52.227-7013 and in similar clauses
inthe NASA FAR supplement. Manufacturer: NeoLogic Systems, Inc., 1450 4th Street, Suite 12, Berkeley,
California 94710.

13. MISCELLANEOUS. If for any reason a court of competent jurisdiction finds any provision of this
License, or portion thereof, to be unenforceable, that provision of the License shall be enforced to the
maximum extent permissible so asto effect the intent of the parties, and the remainder of this License shall
continue in full force and effect. If either NeoL ogic or Licensee employs attorneys to enforce any rights
arising out of or relating to this Agreement, the prevailing party shall be entitled to recover its reasonable
attorneys fees, costs and other expenses. This License constitutes the entire agreement between the parties
with respect to its subject matter, and supersedes al prior or contemporaneous understandings or agreements,
written or oral, regarding such subject matter. No amendment to or modification of this License will be
binding unlessin writing and signed by a duly authorized representative of NeoLogic. This Agreement, and
any rightsor obligations hereunder, shall not be assigned or sublicensed by Licensee without the prior written
approval of NeoLogic. Any such attempted assignment shall be void.

14. COMPLETE AGREEMENT: ThisLicense constitutes the entire agreement between the parties with re-
spect to its subject matter, and supersedesall prior or contemporaneous understandings or agreements, written
or oral, regarding such subject matter. No amendment to or modification of this License will be binding un-
lessin writing and signed by a duly authorized representative of NeoL ogic.

Any questions concerning this License and Limited Warranty should be addressed to the:

NeoL ogic Systems, Inc.
1450 4th Street, Suite 12
Berkeley, California94710

NeoAccess Technical Overview Vv

Vi

NeoAccess Technical Overview

Table of Contents

WEICOME ... et e e enre e 1
1100 1 1 o o 1
The DevelOpment EXPEMIENCEottt 1

WO SWHO ...ttt bbbttt b ettt 1
DESIGN PALEINS.......ceiteieetereete ettt et b et be bbbt bbb e 1
ODBMS and RDMBS DifferENCeScoueieeeieeieeeeereee ettt 2

DALADICHONAIY ...ttt ekttt b ettt 2

TahlES ANA RECOIUS. ...ttt st sttt e e n e e ne e 2

L0 8T o TSR R ST T PSP PRPRPRUROOt 3

LT £ o TP ST PT PP PPt 3
NEOACCESS SYNEIGY .. uverveeeereeereeseeesteseesesseesseeseesseeeesseeseesseessssseessesseessesseessesseessessesssessennes 3
[N E= 1T 0o 0] 1Y (0] 3
TYpPOgraphiC CONVENLIONSc.coieeuieeirieieesie e seesie e s e e s sre e srestestesresseaesaeeenanneeneenens 4

TeChNICal OVEIVIEWooeieececcee e s 5
T gL 0o (1 1o o OSSR 5
THE DELADESE ... ettt ettt b bbbt b e et e besee e e e e e eneas 5

(O[S o DT = o 7= = SRRSO 5

Creating and Opening the DataESe.ccvrrreieirreere e 5

Committing Changes to the DataDase.cocirerereriee et 6

ClOSING the DELADASE.oveeeieeeiirieeeie ettt bbb nbesn e 8
THE ODJECL ...ttt 8

Application-SPECITiC ODJECES......cviiririiiirieere et 9

Sharing 8N ODJECL.........couriireiireeci et
Object Concurrency and Referential Integrity
Adding an Object 10 the Datahase ..o e
Changing @ ObBJECL..........ciieiiiiee ettt b e b se e b e b e s esesbeneenan
Removing an Object
DElting @N ODJECLccveveiiierieieireie sttt
Organizing ObjectSin the Database.........cccccreririiere e
TNOEXING .ttt b ettt e st n e
Y74 [= TSRS

s 1 B I £SO SRURPRRPTRN
Searching for Objectsinthe DatabhaSeccvvvererevesire e
SEIECHON CrITEITA . c..vvvererereteretetete ettt b bbb bbb nena
JEEILOIS ...
Finding Objects Using an Iterator

Adding and Removing Objects USiNG an TEratorcovvvereirreereinenereesereeneeseseeeees 18
Database SEAIrCNINGioreieeirie ettt e et se st e e s e e b e s e e esenneneas 18
Apply aFuNnction t0 & Set Of ODJECES.......cciriruirieiieeere e 19

(@ o] o: B L RO PTSRPRSTTN 22
[65 1S (=100 {10 SR 23
(O T= = ot (= QN 4 - V£ T RSOSSN 23
INGLIVE SEINGS. . .veuviteeetiitee ettt sttt e b et e et e e e st et e e e be s ese et e e e sessesesbaneesessesessesesessaneesesesens 23

NeoAccess Technical Overview vii

Table of Contents

)
Embedded Strings
COlIECHON ClASSESottt sttt sttt et st st e e ebeneenens
BIEES ... R Rt R R e R e RenRe b e b e re e e e e e nen
Using Nodes............
INOEX ClASSES. ... eeeueeeereeeeeeeee ettt sttt st e e et e e et e e e e e e eseesessesaeetesteseessenseneeneenean
Primary and Secondary Indices
TYPE-SPECITIC INAICES ...t
SING INAEX ClASSES.....c.cvreiiirieiecre ettt
CoNSOlIAALEd INAICES. ...ttt sttt be sttt e e b e e e aeneenas
Dynamically Adding and Removing INQICES............ccviiiiriiniieeeeeeeese e 29
Creating Domain-SpeCifiC INAEX ClaSSESccciiiivieiiiicicesiee et 29
ChooSING @ SHITNG INAEX.....cveieiiiicisieieese et se et e bt sesbaneenan 29
ODJECE VEISIONING ...ttt sttt e b et se e bbb b e b e b e b neene s 30
EXCEPLION HANAING.....cecveieeeeietereee st 30
TEMPOIArY ODJECES. ..ottt 32
OBJECE CBCING ...t ettt ettt e bbbt a bbb e bt b e e b e ebeseene s 32
SCHEMA EVOIULION ...ttt st s nes 33
FOPMEL ODJECES.veuiiteteiesiriet ettt ettt bbbttt s bbb 33
Converting the Format of ObjectSin aDatabase..........ccvcevrveerrieireeeeese s 33
Changing OBJECt INAEXINGcevereeuereiieierieeriere ettt st ne e eenas 34
[N =@ o= o SR 34
Defining @ DYNAMIC ClaSS.......c.couiiriieeieieseeie ettt sbesnene s 35
Working with Dynamic Objectsin aDatabase.ccccevevirieeieiecisceseeee st 36
Adding and Removing Attributes from a Dyna-Object InStance...........ccocevverecevenciesieiceen, 36
Changing the Class ID Of @ ODJECLccocueiriiieiiirireeer et 37
Threads and ASYNChIrONOUS [/O.........cooiiiiiieii e e 37
(=0 o | OO 38
CONfIGUITNG NEOACCESS ...ttt ettt st ee et e e e e se e aesbesbesaesbesbeseeseeeenes 38
kNeoMarkSize
ONEOASYNCIO ...ttt e bbb e s b e s bt e bt s bt e st et e e e e e sbesbeebeeneeneene e e e s ennan
ONEOBYLESWEcuviririitisiisii ettt b et h e e bt e e e et e e e b e sb e sb e bt e bt ene e e s ennas 39
[0 VLo D= o 10 o [SRRSO 39
ONEODEBUGFTEEIISE ...ttt et st b et ene et e nenas 39
ONEODEDUGIO ...ttt bbbttt b bt n e 39
ONEODEDUGMEITIONY ...evvriiaireeieiesesr ettt s ettt b st e s st 40
gNeoDynaObject
gNeoThreads...........
gNeoVersions
TULOMTA .ot nreas
(FpLu oo 1o 1o o RO
=0 o [OOSR
The Persistent Classes....
CNeoPersist
CNeoPersistNative
CNeoPartMgr
CPerson...........
Cloker
(O oSSR
L@@ [0 11 o BTSSR
L0 1TSS
The Laughs AppliCation Class.........cccicciieiniiiceieseie et 65
THE CONSITUCLOLveveviiciecieie ettt sttt et se st e et e saeneste e eneseeneane 66
Creating @DOCUMENTccueiriieieiiesi ettt 67
Opening an EXisting Database........co.cocereerenrerieee et 68
The Laughs DOCUMENE ClaSS........couiiiiirierieirieresie sttt st ebe st 69
Creating aNeW Daf@hase.coerirerieinirieeeiereie ettt 70

viii NeoAccess Technical Overview

Table of Contents

Opening an EXisting Databhase........c..cocereerieneerie e
Adding Objects t0 the Dat@haSe.coceerieieririeerieee e
Locating ObjectSin aDatahase..........c.cvvierieiiieeceseeeeeese e

NeoAccess Technical Overview

Table of Contents

o

NeoAccess Technical Overview

Welcome @

|ntroduction

Thank you for taking the time to review NeoA ccess, the cross-platform object-oriented database engine.
Applications based on NeoA ccess store and retrieve even the most complex application-specific objects and
data quickly and easily. NeoA ccess has the features and performance you need to efficiently build powerful
commercia and in-house applications.

The programming interface to NeoAccess is designed to keep visible complexity to a minimum while
providing afeature-rich foundation on which to build and enhance applications. Object-oriented developers
are most productive when dealing with classes and objects, not black-box procedural libraries, which most
databases are. NeoA ccess allows devel opers to access database capabilities by subclassing and function
invocation.

Application frameworks include classes that you can use to build the user-interface portion of your
application. NeoAccessisaset of C++ classesthat extends these frameworksto facilitate the devel opment of
an application’s data model, or back-end. Developers subclass and instantiate NeoA ccess classes to
implement those objects that need to persist across session boundaries — that time between when the user
quits your application at night and startsit up again eight hours later smelling of coffee and Corn Flakes.

This manual presents you with a preliminary introduction to the capabilities of NeoAccess. Each topic
discusses issues of interest. Chances are that you’ ve probably heard the terms “ object-oriented” and
“database” at least five timesif you' ve been involved in software development for more than ten minutes.
While we assume you have aworking knowledge of these terms, this document explains how NeoL ogic has
fused these two ideasinto a very powerful development tool. NeoAccess is different from other database
engines, object-oriented or otherwise. Y ou can refer to this document in order to learn how NeoL ogic has
addressed these issues.

The Development Experience

Who's Who

A typical development team on a project using NeoA ccess-oriented project is often staffed with individuals
or groups that have specific responsibilities. It depends on the project, but when two or more people are
involved, the project will usually have a“front-end” group and a*“back-end” group. The front-end group,
which we usually refer to as application developers, deal with user interface issues. The back-end group, or
database developers, work on issues having to do with how persistent application objects are organized,
stored and accessed.

A great deal of effort has been put into NeoA ccess to make the devel oper experience of both of these groups
as productive and enjoyable as possible. But it is particularly important that complexity and logistics be
hidden from application developers. Thisnot only allows them to remain productive, but also allowsthem to
design and implement a front-end that is decoupled from the specifics of how objects are defined, organized
and accessed in the back-end.

Design Patterns

Experienced object-oriented software designers recognize that, in abroad sense, al systems share acommon
set of problems. They have also found that the general set of solutions used to solve these problems are very
similar, even when the design objectives, programming languages or devel opment toolsdiffer. Designersuse
the term design patterns to describe the commonalities found in the problem and solution sets of these

NeoAccess Technical Overview 1

Welcome

systems. A design pattern describes a problem which occurs repeatedly in different situations yet can be
solved by viewing the problem as a general set of relationships, responsibilities and collaborations. The
benefit to grouping general problems and their solutionsin design patterns and, further, by understanding the
relationships that exist between patterns, is that the solutions to new problems can then be stated in terms of
these well understood patterns. It isimportant that a designer understand the motivation for, applicability of
and consequences of a design pattern in order to use it effectively. Importantly, the name of a pattern should
communicate the general problem it addresses and the perspective taken in solving it.

It is sometimes convenient to view the features provided by a database management system as consisting of
three layers of functionality;

[] Persistence properties
] Organizational constructs
[A high-speed search engine

These three layers are design patterns. The persistence pattern addresses the need to make data persist over
time, even when the computer or application which managesthe datais not running. The organization pattern
is used to manage relationships that exist between persistent objects. The search pattern uses the
organizational constructsto obtain fast accessto the objects of interest even when the overall data set is huge.

Itisuseful to consider thesethree main design patterns and the rel ationshi ps between them as you explore the
features and structure of NeoAccess.

ODbBMS and RDMBS Differences

Object-oriented program developers are most effective when working with classes and objects. NeoAccess
takes an approach to database technology that eliminates the paradigm shift that often plagues more
traditional relational database systems. However, in adopting NeoA ccess, some devel opers with previous
relational database systems experience may need some help in relating their previous experiences to the
NeoA ccess approach. The following definitions are included for those devel opers who aretrying to make the
transition from older, purely relational technology to NeoAccess.

Data Dictionary

In relational databases, a data dictionary is a description of the structure of a database. This definition can
include the definition of data types, record layouts, and indexing options. Many database management
systems use an internal representation of this dictionary, called a schema, to process database queries and
updates.

Thecreation of adatadictionary isadatabase administration task begun during theinitial phases of the system
design process. Y et data dictionaries typically evolve dramatically during asystem’ slifespan. The evolution
of adatabase dictionary is called schema evolution.

NeoA ccess obtains much of the information that is typically contained in a data dictionary, such as class
definitions, from the compiler itself. Instead of asking devel opers to create and maintain a data dictionary,
NeoA ccess uses metaclass objects to obtain information about persistent classes in the current application.
The metacl ass table maintained by NeoA ccess contains class IDs, alist of classes that refer to the ancestors
of each class, the class names, the number of index keys maintained by each class, and other pertinent
information.

Tables and Records

Traditional database management systems store datain tables. A table is the collection of recordsin a
database that have the same type. Indeed, the definition of atablein aschema defines the layout of the record
in the database.

The definition of a NeoA ccess-based persistent classis similar to atable definition, except that NeoAccess
knows how classes arerelated to one another. This allows NeoA ccessto perform deep searcheson aclassand
its subclasses.

2 NeoAccess Technical Overview

Welcome

9

Individual object instances of aclass are similar to recordsin atable. But while both records and objects
contain state information, object also contain the intelligence to manipulate that state.

Query
A query isan abstract specification of the set of objectsin adatabase. The relational query language
supported by most traditional database systemsis SQL.

The search mechanisms provided by NeoA ccess use a flexibl e selection mechanism based on objects having
abase class of CNeoSelect. Subclasses of CNeoSel ect can be designed to create sel ection criteriaobjectswith
tremendous power. CNeoSelect is atype of selection criterion (also called select key) that is used to locate
objects. Locating objects using a specific selection criterion involves instantiating an object whichisa
subclass of CNeoSelect and passing that object to the database’sf i ndCbj ect function or the constructor
of an iterator.

Cursor

A cursor isaconstruct used to obtain query results serially one record or object at atime. Cursors are most
useful when the data set of a query istoo large to manage effectively in memory at once.

NeoAccessincludes a set of iterator classes for iterating over a set of objects that match a given selection
criterion. Iterators greatly simplify the management of large sets of objects by application developers.

There are several iterator classes that come standard with NeoAccess. They are often called keyed iterators
because of their unique ability to iterate over a subset of a collection based on an abstract select key. The set
of operations supported by iterators include the ability to traverse the collection forward and backward, the
ability to test whether there are more items in the collection beyond the current item and the ability to reset
theiterator to the beginning again. Some subclasses of CNeolterator can eveniterate over all matching objects
of aparticular base class and all subclasses, or iterate over al matching itemsin a partslist.

N eoAccess Synergy

A car isn’t acar without a minimum set of parts: wheels, adrivetrain and some way to contral it. These base
components work synergistically to build a higher level abstraction - a means of transportation. (Of course
any car salesman will tell you that cars are much more than simply a means of transportation. They're fast,
comfortable and good looking. In short, they’ ve become status symbols.)

In much the same way, most mature application frameworks are structured as a network of subcomponents
that each contribute to the synergistic whole. Mg or subcomponents might include event handling, document
management, geometry support and, of course, views. Zooming in even further, each of these subcomponents
might be further dissected.

NeoAccessisitself acollection of lightweight layered abstractions. At abaselevel there are simply databases
and persistent objects. Thisis the rich soil within which higher level abstractions are rooted. At the highest
level isafull featured object database. But the truly unique power of NeoAccess is that the mid and upper
layer abstractions are completely accessible to devel opersto exploit and extend. It is this accessibility and
extensibility that isthe most important advantage object systems provide over procedural systems.

Naming Conventions

In order to enhance the readability of the source code and avoid naming conflicts with system software and
your application code, all NeoAccess source code and header files adhere as closely as possible to the
following set of naming conventions:

[l Instance (non-static) member names begin in lower case.
[] Class (static) member names begin in upper case.
] Instance (non-static) data member names begin with “f .
[] Class (static) data member names begin with “F”.

NeoAccess Technical Overview 3

Welcome

[Global variable names begin with “gNeo”.

] Parameter variable names begin with “a”.

] Constant names begin with “kNeo”.

[Type names begin with “kNeo” and end with “Type”.

L] Most class names begin with “CNeo”.

[The names of embedded classes begin with “ENeo”.

] The names of template classes begin with “TNeo”.

] Property names, also called tag names, begin with “pNeo”.
[J Conditional compile symbols begin with “qNeo”.

Typographic Conventions

The following typographic conventions are followed throughout this manual :

[] Source code examples and the names of procedures, variables and constants are all set using Cour i er
type.

] Important technical terms are set using bold type in defining sentences or first usage.

[] Optional class, argument and variable names are set using italic type.

[] SMALL cAPs style is sometimes used for emphasis.

4 NeoAccess Technical Overview

Technical Overview

9

Technical Overview

|ntroduction

This section contains basi ¢ explanatory information concerning NeoA ccess, including basic terminology and
the methodol ogies you can use to devel op database applications with the product. Detailed information
concerning each of the NeoA ccess classes and member functionsis provided later. For now, theintention is
to arm you with the information you will need to proceed with your development efforts.

The Database

Computer data are usually stored in physical files. The operating system usually represents afile asasingle
stream of bytes. Typically the datastream isread in and written out serially, from beginning to end. However,
many file systems also provide a mechanism for “seeking” to a particular location in the file and reading or
writing data at that location.

Macintosh files consist of a datafork and aresource fork. The data fork is the same as the byte stream found
on other systems. Resources are chunks of data that are identified by a 4-byte resource type and either a
resource D or aresource name. The Macintosh Resource Manager provides random accessto resources. The
datafork, on the other hand, contains a single stream of bytes. Other operating systems that don’t support a
resource fork may still have resource files that provide capabilities similar to Macintosh resources. But both
mechanisms have their limitations. The datafork iswithout structure. The resource fork has structure but the
mechanism that provides that structure, the native resource manager, is very inefficient when the number of
resources begins to grow.

CNeoDatabase

NeoAccessincludesaclass called CNeoDatabase. CNeoDatabase stores objectsin acontainer. A container
isarepository which contains a NeoA ccess database. In most cases, NeoAccess uses afile’ sdatafork asits
container. But other types of containers might also be used; OpenDoc or OL E containers are examples of this.

Objects are the basic elements of object-oriented applications. Think of them asintelligent data. The
CNeoDatabase class organizes objects the way the application references them, instead of just by aresource
ID or name. Fortunately, CNeoDatabase isalso very efficient. It doesn’t low down when dealing with alarge
number of objects the way resource managers do.

Creating and Opening the Database

CNeoDatabaseis a class of object. Just like any other object, an instance of this classis created by using the
new operator. (The new operator is replaced by the NeoNew macro to provide additional debugging
support.) To access objects contained in a CNeoDatabase, it must be open. However, beforeit can be opened,
a path name must be specified. This path is the location of the database file in the file system.

Many application frameworks place the responsibility for creating the main datafile for an applicationin an
environment-specific document-derived class. Your application should derive a class from the application
framework’s document class to further specialize its member functions. This class will always be derived
from the CNeoDoc class, which is an environment-neutral part of the NeoAccess class hierarchy.

In the following code snippet, the CNeoDocPP constructor calls a number of member functions specific to
Metrowerk’s PowerPlant application framework, and then it creates a new instance of the
CNeoDatabaseNative class. This action creates the database object, but does not create its associated filein
the file system.

NeoAccess Technical Overview 5

Technical Overview

voi d CNeoDocPP: : CNeoDocPP(const OSType aCreator, const OSType aType,
const Bool ean aPrintabl e, const Bool ean aNewDat abase,
const Bool ean aCreat eDat abase)

LG owZone *gr owZone;
NeoUsed(aPri ntabl e);

Set Super Conmander (gNeoApp) ;
Set Super Model (gNeoApp) ;

f NewDat abase = aNewDat abase;
nFil e = NeoNew CNeoDat abaseNati ve(aCreator, aType);
gNeoDat abase = ((CNeoDat abaseNative *)nFile);

growZone = LG owZone: : Get G owZone();
i f (growZone)
gr owZone- >AddLi st ener (t hi s);

f OpenMode = NeoReadW it ePerm
}

Creation of the CNeoDatabase-derived object is similar for MFC-based applications. For example, when the
user chooses the New command in an MFC-based application, the document object is created automatically
by the framework when its OnNewDoc unent message handler iscalled. The OnNewDocumrent handler in
the CNeoDocM FC-derived class would, in turn, call the OnNewDocunent function in the CNeoDocMFC
class. That codeis asfollows:

BOOL CNeoDocMFC: : OnNewDocurrent ()

{
Bool ean result = CDocumnent: : OnNewDocunent () ;

NeoAssert (! f Dat abase) ;

f Dat abase = new CNeoDat abaseNat i ve;

CNeoDat abase: : Set Curr ent Dat abase(f Dat abase) ;
Set Modi f i edFl ag(FALSE) ;

return result;

}

The foregoing code for the OnNewDocurmrent function uses the new operator to create an instance of the
CNeoDatabase class. The Set Cur r ent Dat abase member function sets the document’ s database

(f Dat abase) to be the currently active database and causes the f Dat abase pointer to be stored into the
gNeoDat abase globa variable.

Once the database has been created, objects can be added, deleted or changed. But these operations will take
place only in the state of the database stored in memory. In order to save these changesto a permanent file,
the database must be committed.

Committing Changes to the Database

When the contents of a database change — objects have been added, deleted or changed — these changes
occur only in memory. The state of the database on disk is not affected. Changes only become permanent
when the on-disk state of the database is synchronized with itsin-memory state. The database commit
processinvolves writing the state of “dirty” objectsin memory out to disk.

Aswas the case for creation of the database, saving its state is accomplished by code that is largely unique
for each development environment. In the case of PowerPlant, committing changes to the databasefileis

6 NeoAccess Technical Overview

handled by the DoAESav e member function of the CNeoDocPP class. The codefor thisfunctionisas J
follows:

voi d CNeoDocPP: : DoAESave(FSSpec &aSpec, OSType aType)

{
CNeoDat abaseNative * database= get Dat abase();
CNeoDBFocus dbFocus(dat abase) ;
NeoUsed(aType) ;

/1 Specify the location of the database in the file system
dat abase- >Speci f y(&Spec) ;
m sSpeci fied = TRUE;

/1 Create the database file.
dat abase->create();

/1 Open the database file.
dat abase- >open(f sRdW Per n) ;

/1 I'f this docunent has a wi ndow, update its title.
if (MmN ndow)
MmN ndow >Set Descri pt or (aSpec. nane) ;

/1 Wite out all objects contained in this database.
dat abase->conmi t (TRUE) ;

/1 Note that document is no longer dirty.
setDirty(FALSE);

The foregoing code assumes that the file in which the data are to be saved has already been selected, and
proceeds to call the Speci f y function of CNeoDatabase to create the CNeoContainerStream object into
which the dataare to be written. (See the discussion of Object I/O for more details on streams) Following this,
the database fileis created and opened. If awindow is open on the document, itstitle is changed to the name
of the database file. The call to thecommi t function causes the list of database objectsin memory to be
scanned, writing out only those that have been changed during the course of the application’s execution.

When developing an application using MFC, saving the changed data in the database is accomplished with
the OnSaveDocunent function of the CNeoDocMFC class. The code for that function is as follows:

BOCOL CNeoDocMFC: : OnSaveDocunent (const char *aPat hNane)

if (fDatabase) {
Set Pat hNane(aPat hName, fAddToMRU);
i f(!fDatabase->i sOpen() || fDatabase->f NewStrean) ({
f Dat abase- >create();
f Dat abase- >open(NeoReadW it ePerm;

}

f Dat abase- >conmi t (TRUE) ;

if (!fDatabase->isDirty()) {
Set Modi fi edFl ag(FALSE) ;
return TRUE;

}

return FALSE;
}

NeoAccess Technical Overview 7

Technical Overview

The foregoing code performs many of the same actions as the corresponding code for the PowerPlant
framework. If the databasefileisnot yet open, thenthecr eat e and open member functionsinherited from
CNeoDatabase are called. Then the changed data are written to the database file by virtue of the call to the
conmi t function. If the operations to write out the data are successful, thei sDi rt y function will return
FAL SE, the document will be marked as unmodified, and the function will return TRUE; otherwise, FALSE
isreturned, indicating that the “save” operation was not successful.

Closing the Database

A database object needs to be closed before the application terminates. If any objects have been added or
changed, then those changes need to be committed before the database is closed.

In the case of the PowerPlant framework, the database file is closed when the ¢l ose function of the
CNeoDatabase classis called.

Key Point

Whenthecl ose functioniscalled, any uncommitted changeswill belost. The databasefileis
physically closed and the state of the database on disk is left unchanged. It is therefore very
important that the database’sconmi t function be called before closing the database if changes
are to be saved; otherwise, the changes will be lost.

When using MFC, closing the database takes place just before the document object is disposed of. This can
occur as the result of closing the window in which the document’s datais displayed or by the user’s choice
of the Close menu command. In either of these cases (and others), theOnCl oseDocunent function, which
is overridden in the CNeoDocMFC class, is called to perform the close operation. That code is as follows:

voi d CNeoDocMFC: : OnCl oseDocunent ()

{
BOCOL bAut oDel ete = m bAut oDel et €;
m bAut oDel ete = FALSE; // don't destroy docunent while closing views
CDocunent : : OnC oseDocunent () ;
if (fDatabase) {
if (fDatabase->isOpen())
f Dat abase- >cl ose() ;
del et e f Dat abase;
i f (gNeoDat abase == f Dat abase)
gNeoDat abase = nil;
f Dat abase = nil;
}
m bAut oDel et e = bAut oDel et g;
/1 delete the docunment if necessary
if (m_DbAutoDel ete)
delete this;
}

Asisevident from the foregoing code, after the OnCl oseDocunent function of the CDocument base class
iscaled, thecl ose functionis called for the database object, if that object exists and is open. If the
bAut oDel et e flag is set for this document, then the document object is deleted.

The Object

Asthe name implies, object-oriented systems deal primarily with objects. Objects are pieces of intelligent
data. The state of an object consists not only of data values, but also of the set of operations that are defined

8 NeoAccess Technical Overview

Technical Overview

for that data.

For example, an instance of the CNeoDatabase classis an object. This class of object contains state
information: it may refer to an operating system file, it has alength and an object count. But thereal value of
a CNeoDatabase isthat it performs actions for you without your having to know how it does them: for
example, your application asks the database object to commit to disk the changes that have been made in
memory. Note that you don’t need to know the details of how this update processis performed. Y ou just need
to know how to ask the database to perform the action. Object classes centralize and isolate intelligence so
that visible complexity is minimized.

Application-Specific Objects

Application-specific objects encapsul ate the intelligence of your application. They are the value that you add
to the user experience. The raison d’ étre of your application is to provide a mechanism that allows usersto
manipul ate these objects.

Some application-specific objects are persistent objects. Users create something that they can come back to
and work with again later. In order for these objectsto persist, your application needs to include amechanism
that preserves the state of these objects after your application has quit, and which can be used to locate the
objects again later.

It isimportant to remember that windows and the other components that make up the user interface to your
application are not the objects that need to persist over time. Visual objects disappear when the user quitsthe
application. These persistent objects are sometimes called model objects.

Historically, most applications that support a document architecture do so by using afairly rudimentary
mechanism called a stream. Streaming the entire contents of afile back and forth between the document and
memory is sometimes called the inhal e/exhal e approach to object persistence. Using this approach, a
persistent object must be in memory while the application is running. When the user chooses the Save...
menu item, the application opens the document file and serially writes every persistent object in memory out
to disk. The process of reading a document involves reopening the file and reading its entire contents back
into memory.

Most database systems provide application builders with an API for reading and writing data from database
tables. But the information returned by a database query is usualy just a data record, not an object. Object-
oriented devel opers need to write “wrapper routines’ to copy the individual fields of arecord into the data
members of the application-specific objects. Developers using non-object database systems are forced to
handle other bothersome logistics, like keeping track of which objects have changed: changed objects need
to be kept together so that the database can be updated to reflect those changes, new objects need to be kept
somewhere el se so that they can be added to the database, and references to shared objects need to be tracked
closely so that the objects stay consistent. Then updates necessitate that another set of wrappers be written to
copy data back into the database record format for writing back in the database.

NeoA ccess frees devel opers from worrying about these details. The approach taken by NeoAccessis that
objects should be viewed as having a set of properties and a malleable state. Just as view objects have
properties that allow them to be drawn on a screen or printer relative to other objects, persistent objects are
provided with persistence and sharing properties by NeoAccess. These properties allow objects to maintain
an association with a database. This association, which can be easily built and broken, allows objectsto
migrate freely between disk and memory. An object’sinterface to these properties deals with issues such as
making and breaking the obj ect-database connection (adding or del eting the object from adatabase), locating
and later freeing the object in memory, object sharing, and maintaining relationships between itself and other
objectsin a database.

NeoA ccessincludes aclass of object called CNeoPer sist, on which all persistent objects are based. Built into
this base class is intelligence about managing the permanence of objects. (The leaf class of an object isits
most specific class. The leaf class and all super classes of an object are referred to as the object’ sbase
classes.) It' s easy to define application-specific classes based on CNeoPersist, because most of the
complexity involved in adding, del eting and locating objectsin a CNeoDatabase has been encapsul ated in the
base class. All you need to add isthe intelligence that makes the object useful in your application. In essence,
persistence comes free, or at least at avery low cost.

NeoAccess Technical Overview 9

10

Technical Overview

NeoA ccess maintains a distinction between persistent objects and permanent objects. A persistent object is
any object that can be permanent. A per manent object is one which has been added to a database. For
example, an application may create anew persistent object. However, if the application quits without adding
this object to adatabase and then commits the change, then the state of the object isnot permanent. So, while
all permanent objects are persistent, not all persistent objects are permanent.

Key Point

As noted, persistent objects (CNeoPersist and its subclasses), by their very nature, migrate
freely between the database and memory. As such, these objects can not be local variables on
the stack nor can they be embedded data members of other objects.

The definition of application-specific classes are usually found in header files while the implementation of
member functions are found in source files. A simplified class definition is as follows:

const Neol D kPersonl D = 25;

const NeoTag pNeoNare = 0x6e616d65; /* ASCIl - ‘nane’ */
const NeoTag pFather = 0x66617468; /* ASCII - 'fath' */
const NeoTag pAddress = 0x41647273; /* ASCIl - 'Adrs' */
const NeoTag plQ = 0x49512020; /* ASClI - '1Q "' */

cl ass CPerson : public Conpartnent

public:

CPerson (const CNeoString &MNanme = ““,
const CNeoString &aFat herNane = ““,
const CNeoString &nAddress = “*“,
const unsigned short alQ = 100);

Neol D get C assl D(void) const {return kPersonlD;}
static CNeoPersist *
New(voi d) const {return NeoNew CPerson();}

Noi ses get Fil eLengt h(const CNeoFornmat *aFormat) const;

voi d readObj ect (CNeoStream *aStream const NeoTag aTag);

voi d writeQbject (CNeoStream *aStream const NeoTag aTag);
prot ect ed:

CNeoString f Nane;

TNeol DSwi zzl er f Fat her;

CNeoString f Addr ess;

unsi gned short f1Q
s

There would be many more member functions and variable definitionsin atypical class definition; however,
the proceeding class definition illustrates some fundamental points. Each persistent class has an associated
class ID which is unique to that class. Y ou must define this value explicitly, as was done with the

kPer sonl D constant. Natice in the foregoing definition that, in addition to the constructor, the

get Fi | eLengt h,readObj ect,andw i t eCbj ect member functions have been overridden. All
classes for which persistent data is to be stored must implement these functions. See the discussion titled
“Subclassing CNeoPersist” for a complete list of member functions which need to be overridden.

Devel opers sometimes confuse class IDs and object IDs. The class I D of a persistent class must be unique
among al other persistent classes of an application. The class ID should be explicitly defined in the header
file containing the definition of the class. All class IDs below 20 (including negative class IDs) are reserved
for NeoAccess internal classes. When NeoAccess' s dynamic object facility is enabled, all class IDs greater
than or equal to kNeoFi r st Pr ot ot ypeCd ass| Darereserved for dynamically defined classes. (Seethe
Dynamic MetaObject Facility documentation in the NeoAccess Extrasfolder for more details.) TheclassIDs
of all statically defined persistent classes should therefore be between 20 and

kNeoFi r st Pr ot ot ypeC assl D.

NeoAccess Technical Overview

Technical Overview

o

Every persistent object has an object ID. An object 1D can be explicitly set before the object is added to the
database. Alternatively, you add the an object with an object ID of zero to the database, which indicates to
NeoAccessthat it should assign it an object ID which isunique among all other objectsin that database which
were implicitly given object IDs. The ID of objects are usually unique, though they needn’t be.

Tags

Itissometimesuseful to beableto refer to adatamember of apersistent object abstractly. Just asall persistent
objects have an object 1D, data members of persistent objects can be assigned tag values. A tag isaunique

four-byte constant that can be used to symbolically refer to adatamember of an object. Theget Val ue and
set Val ue functionsof CNeoPersist and its subclasses can be used to get and set datamembersvaluesusing
atag. Tagsare aso usein the creation of relational queries and indices.

Creating an Object
Creating a persistent object is no different from creating any other type of object; use the new operator.

Key Point

In some cases, the NeoNew macro is used instead. This provides additional debugging support
when objects are created. NeoNewisamacro which usually equatesto new. But if the compile-
time constant gNeoDebugMenor y is defined, then this macro does the right thing to support
core leak detection.

Sharing an Object

The CNeoPersist class provides a sharing property. Any persistent object can be shared using this facility
whether it is permanent or not. A persistent object remembers how many referencesthere areto it. When an
object is brought into memory, either by creating it with the new operator, getting areferenceto it from
another component, or locating a pre-existing object from a database, the number of references to the object
isincreased. The object staysin memory until the last reference is disposed of .

Suppose your application is apersonal productivity suite that includes calendar and address book functions.
A user may have the calendar and address book open at the same time and both of these components may
refer to acommon persistent person object. Without asharing property built into the person class, the calendar
component of your application might del ete the person from memory not knowing that the address book
component still refersto it. One way to avoid this difficulty might be to have each component maintain a
separate copy of the object in memory, but that brings up the potential for each of the copies to be slightly
different.

References can be added to an object by using ther ef er To function of the object. (A referenceisimplicitly
added to an object when it is obtained from adatabase using itsf i ndObj ect function or the FindByX static
functions of CNeoPersist and its subclasses. References are NOT however added when an object is obtained
from an iterator.) When your application has finished referring to it, it should call unr ef er to remove the
reference.

Key Point

Thereis an easy way to remember which NeoAccess member functions add references to
objectsand which don’'t. Thestatic Fi ndBy X member functionsall add areferenceto thereturn
value, if any, as does the assignment operators of swizzlers. All other functions do not add a
reference.

There are many different ways for an application to manage object concurrency. (For information on how
NeoA ccess can more actively manage object reference counting for you, see the discussion of swizzlers
below.) Consider the sample routines below:

NeoAccess Technical Overview 11

Technical Overview

voi d Masseuse(CNeoDat abase *aDat abase)
for (long index = 0; index < 100; index++)
MassageOhj ect (aDat abase, index);
}
voi d MassageOhj ect (CNeoDat abase *aDat abase, const Neol D al D)
CNeoAppSpecific * obj ect ;
obj ect = CNeoPersi st:: Fi ndByl D(aDat abase, kAppSpecificlD, alD, FALSE);

/1 Do a bunch of stuff to the object.
I

/1 Call unrefer to renove the reference we obtained from Fi ndByl D.
obj ect->unrefer();

}

The function MassageObj ect massages the single object that is returned by Fi ndBy| D. If the last
argument of Fi ndBy| Dwerenon-ni | , then areference would have been added to each object inthe array.
All of these references need to be disposed of properly.

Consider what would happen if an exception were to occur in MassageCbj ect between the point where
obj ect wasreturned from the database and wherethereferencetoobj ect wasremoved. The object would
never be deleted because it would have one more reference than it should have.

There are several possible solutions to this dilemma. The body of MassageCbj ect could beenclosedina
NEOTRY block with a NEOCATCH block that removes the reference.

voi d MassageObj ect 2(CNeoDat abase *abDat abase, const Neol D al D)
CNeoAppSpecific * obj ect =nil;

NECTRY {
obj ect = CNeoPersi st:: Fi ndByl D(aDat abase, kAppSpecificlD, alD, FALSE);

/1 Do a bunch of stuff to the object.
I

/1 Remove the reference we obtained from Fi ndByl D.
obj ect->unrefer();
object = nil;

}
NEOCATCH {
i f (object)
obj ect->unrefer();

}
NECENDTRY;
}

The overhead of NEOTRY blocksisrelatively high, both in terms of code space and execution time. For this
reason Massagehj ect 2 islessthan optimal. NeoAccess includes a construct called a swizzler which
manages reference counting automatically. Refer to the “ Swizzlers’ discussion later in this section for more
details.

Object Concurrency and Referential Integrity
Concurrency and referential integrity are two of the more difficult issues for class designersto solvein a

12 NeoAccess Technical Overview

Technical Overview

genera fashion. While recognizing conflictsis relatively straightforward, resolving them and avoiding
deadlocksis not.

The CNeoPersist class has a property that allows devel opers to indicate whether an object isbusy (i.e., inan
inconsistent state). An object’s busy state is kept consistent using the same mechanism that keeps object
references up to date even if thereisafailure. Seethe topic “ Sharing an Object” immediately above for more
information.

An object could be marked busy and unbusy by using the set Busy and set Unbusy member functions
respectively, However the use of these functions are discouraged because an exception thrown before the
set Unbusy call would result in an object’ s busy state being left with an improper value.

voi d ChangeObj ect (CAppSpeci fic *albj ect)
{

/1 Mark the object busy so that others realize that it may be inconsistent.
albj ect - >set Busy();

/1 Call a routine that changes the state of the object in sone round-about way.
Thr ashQnj ect (aChj ect) ;

/1 Now that it is once again consistent, mark the object as no | onger busy.
obj ect - >set Unbusy() ;
}

CNeoBusyFocus objects are used to manage the busy state of an object consistent in the event of afailure. A
busy focus object records the busy state of an object before setting the object busy. The destructor of the
focus, which is called even if a C++ exception is thrown, resets the object’ s busy state.

voi d ChangeObj ect (CAppSpeci fic *albj ect)
{
CNeoBusyFocus(ahj ect) ;

/1 Call a routine that changes the state of the object in some round-about way.
Thr ashQbj ect (aChj ect) ;
}

Adding an Object to the Database

At some point during the execution of your application, you will decide that an object needs to be made
permanent. For example, in the personal productivity application mentioned earlier, imaginethat the user has
added a new person to the address book. When the time comes to add the person object to the database, your
application will call the database'saddCbj ect function. An example of thisis as follows:

CPer son *CWDocunent : : Cr eat eNewPer son(CNeoSt ri ng aNane,
CNeoString aFather, CNeoString anAddress, unsigned short anlQ
{

CPer son* pPerson = NeoNew CPerson(aNane, aFather, anAddress, anlQ;
gNeoDat abase- >addChj ect (pPer son) ;

return pPerson;

}

When the new object is constructed, the name, father’s name, address and |Q arguments to the
Cr eat eNewPer son function provide the means to create a complete CPerson object, as specified earlier.
Thecall totheaddObj ect function adds the object to the database.

NeoAccess Technical Overview 13

Technical Overview

o

Changing an Object
A distinction can be made between permanent data members of an object and transitory ones. Per manent
member s are those that make up the permanent state of an object. A CPerson object’ s address and phone
number are permanent. Transitory member s are generally used for housekeeping tasks while the object is
in memory. Pointers, reference counts and the like are usually transitory values.

A property of permanent objectsis their ability to track when the value of a permanent data member is
changed. This allowsthem to update their state on disk to match the modified statein memory when changes
are committed. Member functions which modify these permanent data members should usetheset Dirty
function to mark the object as having been modified.

Key Point

Changes to persistent objects occur only in memory. It is only when the database is committed
that all changesto dirty objects are written to disk.

voi d CAppSpecific::setPernVal ue(const |ong aVal ue)

f Perm = aVal ue;
setDirty();

Removing an Obiject

Inevitably, your application will need to remove objects from a database. The database'sr enovehj ect
function does this. An object continues to exist in memory after it has been removed. It can be manipulated
just like any other object. It can even be re-inserted in the same or any other database at some later point. The
renovehj ect function frees the file space taken up by the object and removes it fromits indices.

Deleting an Object
A persistent object is deleted from memory by using the unr ef er function.

But unr ef er ’ing an object does not always result in the object being del eted from memory. Some other part
of the application may still refer to the object in memory. NeoAccessinsuresthat objects are deallocated from
memory only after al references have been removed (by calling unr ef er).

But there isyet another reason why objects may remain in memory even after all the application’ sreferences
to it have been deleted. NeoA ccess includes a very sophisticated object cache, whose purpose is to improve
object access times by minimizing disk activity. NeoAccess may decide to keep an object initscachein case
the application triesto accessit again. L ocating the object the next timewill befast. The cacheis purged when
application memory islow, so that the object cache will never cause your application to run out of memory.
Caching can improve access times by as much as 20 times in some situations. (Y our application’s mileage

may vary.)

Organizing Obijects in the Database

To date, object database usage has not grown at a rate comparable to that of traditional relational systems.
One of the mgjor reasons for thisisthat most modern database applications are designed with the assumption
that data can be retrieved using relational queries (which are also called associative lookups). While first-
generation object databases execute referential queries (also called parts explosions) extremely well, most do
not even support relational queries per se.

NeoAccessis different. While NeoA ccess provides very powerful referential query mechanisms, the most
prevalent way to locate objectsis viaits relational query mechanisms.

14 NeoAccess Technical Overview

Technical Overview

Indexing

Objectsin aNeoA ccess database are organized primarily by class. Thisisana ogousto the way that relational
systems store records in tables. For example, all CCircle objects in a graphics application are grouped
together, aswould be all CSquares. NeoA ccess a so knows how classes are related to one another. It knows,
for example, that the CCircle and CSquare classes have a common parent class, CShape. Knowing the
genealogy of classes alows the query mechanism to be much more powerful than a system which does not
support inheritance. By performing a single database query, the screen update member function of our
mythical graphics application can locate al objects having a base class of CShape located in a particular
update region.

All objects of aparticular class are grouped together using one or moreindices. By default, the primary index
of each class sorts all objectsin ascending order by object ID. Additional secondary indices might also be
used to sort objects of a class based on other data values. The indexing defined for objects of aclassina
database will depend on the application’ s requirements.

Y ou might, for example, own a shoe store and manage your inventory in a NeoAccess database. All CShoe
objectsin the database might be sorted using one or more secondary indicesin addition to the primary index
—by size, by color and by manufacturer. The indexing defined for objects in a database will affect the speed
with which objects are found during a database query. A search for shoes of a particular size will be much
faster if shoes are sorted by size.

Indices can be added and removed from a class of objects on a per database basis at runtime. Two inventory
databases, which are open at the same time in the proceeding shoe store exampl e, might sort shoe objects
differently based on the current needs of the application or the whims of the developer.

The process of designing an indexing strategy for an application involves balancing the costs and benefits of
binary searches using indices and serial traverses of alist. However, except for access times, the part of an
application that is trying to locate objects needn’t be aware of whether a search is performed linearly or
serially.

Swizzlers

While NeoA ccess supports associative lookups, one of the biggest advantagesit hasover traditional relational
systemsisthe ease with which it manages direct referencesto other permanent objects. A swizzler isan object
which can be used to refer to another object in a database. A swizzler can be thought of asa " smart pointer.”
It isan object which looks and actslike a pointer, but is more powerful than a standard C pointer in that it can
be used to refer to permanent objects that might not even be in memory yet. A swizzler data member of a
persistent object can be used to maintain a one-to-one relationship between itself and the object referred to
by the swizzler.

Using swizzlersinstead of object pointers removes the need for application devel opers to explicitly add and
remove object references to persistent objects. Thisisbecause the assignment operator of aswizzler removes
its reference to the object it was referring to and adds a reference to the object being assigned to it. The
swizzler destructor, which is even called when a C++ exception is thrown, also removes references as the
swizzler goes out of scope.

The snippet below illustrates the use of a swizzler to manage reference counting of objects returned by an
interator. Note that reference counting of objects returned by the iterator is handled automatically by the
swizzler.

Likeaswizzler, atracker isa“smart pointer” which is used to refer to another object. However, trackers are
not used to refer to reference counted objects. Instead, they refer to transitory objects which are to be deleted
when the tracker goes out of scope. The snippet below usesa TNeoTracker object to refer to theiterator object
returned by the database'sget | t er at or function. Thisiterator isdeleted when thelocal tracker variable's
destructor is called. Not only do tracker objects handle cleanup issues, atracker’s destructor is called even
when a C++ exception is thrown. Trackers can therefore be used to avoid having to set up catch blocks.

NeoAccess Technical Overview 15

Technical Overview

9
TNeoSwi zzl er <CPer son> per son;
TNeoTr acker <CNeol t erat or > dat abase->getlterator(kPersonl D, nil, TRUE);
person = (CPerson *)iterator->current Cbject();
whil e (person) {
per son->pri nt Name() ;
person->skill();
neoPri nt f (NeoEQL) ;
person = (CPerson *)iterator->nextCbject();
}
Part Lists

While swizzlers are used to manage one-to-one rel ationships between one object and another, apart list isa
sorted or random ordered collection of references to other permanent objects. A part list data member of a
persistent object can be used to maintain a one-to-many relationship between itself and the objects referred
toin the part list. Accessing objects viaa part list or swizzler is sometimes called r efer ential access.

Searching for Objects in the Database

A database search involves the selection of a set of objects which match a given selection criterion.
Ultimately, thetrue value of adatabaseisitsability to locate objects of immediate interest quickly and easily.
The easy-to-use interface to NeoAccess' s search mechanism balances simplicity with power with an
extensible architecture.

Selection Criteria

The NeoA ccess search mechanisms use a flexibl e selection mechanism based on objects having a base class
of CNeoSelect. To support the ability to locate objects using a specific kind of selection criterion, devel opers
simply configure selection objects to indicate those objects of interest in a collection.

CNeoTypeSelect is an abstract base class from which all type-specific selection classes are derived. The
various subclasses of CNeoTypeSelect are used to compare some persistent object data member with the
value of the select key. For example, CNeoL ongSelect compares the long value of the key with the value of
an object’ sdatamember. Thetype of comparison performed is defined by the CNeoTypeSel ect subclass. That
is, CNeoL ongSelect compares long integers while CNeoStringSelect is used to compare two C strings. The
select tag of the CNeoTypeSelect object defines which object attribute is used in the comparison.
CNeoTypeSelect subclasses conpar e function obtainsthe attribute value by using theobject’ sget Val ue
of get Ent r yVal ue member functions.

[terators

16

Indices and part lists are two types of collections that NeoA ccess supports. Aniterator isan object whichis
used to traverse a set of entriesin a collection. The use of iterators greatly simplifies accessto and

mani pulation of collections by application developers. NeoAccess iterators have a common base class of
CNeolterator. The set of operations supported by this class includes the ability to traverse the collection
forwards and backwards, to test whether there are more itemsin the collection beyond the current item and
to reposition theiterator a specific number of entries forward or backward and position to the beginning of
thelist again. NeoAccess iterators are often called keyed iterator s because of their unique capability to
iterate over a subset of a collection based on an abstract select key. See the CNeolterator, CNeol ndexIterator
and CNeoPartListlterator sections for more information on NeoAccess' s iterator classes.

The order in which results of a search are obtained is sometimes as important as determining which objects
meet the criterion and which do not. The order in which objects are returned by an iterator isbased on the sort
order of the index or part list being traversed. NeoAccess includes a query optimizer which chooses which
index will provide the best performance given the specified selection criterion.

NeoAccess Technical Overview

Technical Overview

9

It isimportant to note that iterators provide, in effect, incremental search capabilities. The process of
initializing an iterator resultsin the retrieval of the first of all matching objects. It is only astheiterator’'s
next Cbj ect and pr evi ousCbj ect member functions are used to move forward and backward in the
set that other objects are obtained from the database cache. As aresult, the cost of constructing an iterator is
relatively low and fairly constant even when iterating over extremely large data sets. Further, the memory
requirements of an iterator can be low asiit refers to only one object at atime, not the entire set.

Finding Objects Using an Iterator

The code snippet that followsis an example of afunction that iterates through a set of objects having object
I Ds between one and a hundred.

voi d of f TheWal | (CNeoDat abase *aDat abase)

CNeol DSel ect | owTer m(1);
CNeol DSel ect hi ghTer n{100) ;
CNeoAndSel ect key;

CNeol ndexl terator * iterator;
TNeoSwi zzI| er <CBot t | e> obj ect;

/1 Configure the key to match all objects between 1 and 100.
| owTer m set Or der (kNeoHi ghOr Equal) ;

keyhi gh. set Or der (kNeoLow) ;

key. addTer n(& owTerm ;

key. addTer n{ &i ghTerm ;

/1 Get an iterator which matches all CBottle objects with
/1 object IDs between 1 and 100.
iterator = aDatabase->getlterator(kBottlelD, &key, TRUE);

/1 Prime the | oop.
object = (CBottle *)iterator->currentObject();
while (object) {
/1 \What shoul d happen if one should fall?
obj ect->shatter();

/1 Another bottle within range?
object = (CBottle *)iterator->nextbject();

}

/1 C eanup.

key. renoveTer n{ hi ghTerm ;
key. renoveTer n{| owTern ;
delete iterator;

The snippet begins by configuring the selection terms to match the objects of interest. Theset Or der
function of aselection object is used to specify itsrelational operator or order. The configuration of thelocal
variable| owTer mis set to match those objects with an object ID of one or greater, while the local

hi ghTer mwill match those with object IDslessthan one hundred. Both of these terms are then added to the
CNeoAndSelect key to form a compound select key which matches those objects with object I Ds between
one and one hundred.

Having configured the selection criteria, the database’'sget | t er at or function is used to obtain a pointer
to aninitialized iterator object which matches those CBottle objects with object IDs within the given range.
Theargument totheget | t er at or call isthe class D of the class of objects to be searched. The second
argument isthe selection criteria. The third argument indicates that the CBottle class and its subclasses are to
be searched. Thisis an example of a deep sear ch.

A newly initialized iterator is set to refer to the first matching object in the collection. The iterator’s
cur rent Obj ect function is used to return a pointer to that object, which is assigned to the local swizzler

NeoAccess Technical Overview 17

Technical Overview

obj ect . Thenext Obj ect, previ ousCbj ect andcurr ent Cbj ect functions of an iterator do not
add a reference to the object returned, though the assignment operator of a swizzler does. Thisinsures that
the object will not be purged should a garbage collection occur while the swizzler refersto the object.

The whi | e loop of this snippet continues until all objects in the set have been found. The iterator’s
next Obj ect function is used to advance through the set of matching objects.

Having processed all objects within range, the snippet ends by cleaning up the select keys and iterator. The
r emoveTer mfunction of the CNeoAndSelect is used to remove the terms. Thisis necessary because the
destructor of CNeoAndSel ect otherwise assumes that its terms where dynamically all ocated in the heap and,
as a courtesy, attempts of delete them. Finally, the iterator dynamically allocated by the database’s

get | t er at or function is deleted from memory and destructed.

Adding and Removing Objects Using an Iterator

Iterating over apart list isjust as easy asiterating over an index. Witnessthe gr aduat i on code snippet
below. Theget | t er at or function of an ENeoPartMgr returns akeyed part list iterator which refersto all
students on the class roster with afirst name of Bob.

voi d graduati on(ENeoPart Mgr *aRoster, ENeoPartMr *aAl umi)
{

CNeoNaneSel ect key("Bob");

CNeoPartListlterator *iterator;

TNeoSwi zzl er <CSt udent >gr ad;

/1 CGet an iterator which matches all CStudent objects named Bob.
iterator = aRoster->getlterator(&ey, TRUE);

/1 Prime the | oop.

grad = (CStudent *)iterator->currentCbject();

while (grad) {
/1 Remove the graduate fromthe class roster.
/1 <Ponmp and Circunstance>
iterator->renmoveCurrent(grad);

/1 Brother, can you spare a mllion?
aAl umi - >addTolLi st (grad);

/1 Ch, it's you Bob!
grad = (CStudent *)iterator->currentQbject();

}

/1 d eanup.

delete iterator;
}

Iterators update themsel ves automati cally when the collection they refer to changes. Aniterator will continue
to refer to a specific entry in a collection even when other entries are being added and removed from the
collection. But if the entry that an iterator refersto is removed from a collection, then the iterator repositions
itself to refer to the next matching entry. While the overall structure of thegr aduat i on functionissimilar
toof f TheWal | above, note that because graduates are removed from the part list before proceeding to the
next grad, the final statement of thewhi | e loopisacall to theiterator’'scur r ent Qbj ect , not

next Cbj ect . Thisisbecause the iterator was implicitly repositioned to the next graduate by theiterator’s
renmoveCur r ent function.

Database Searching

18

The database class includes a set of functions to locate objects that match a given selection criteria. These
member functions can search a specific class of objects, or a base class and all of its subclasses. (The base
class of al persistent classes, CNeoPersist, also includes a set of convenience functions for locating objects.
Y our application-specific subclasses of CNeoPersist can include additional member functions that provide

NeoAccess Technical Overview

Technical Overview

similar capabilities, CShape: : Fi ndShapeByRegi on, for example.)

Note

These search functions of the database class are best suited for situations where only one object
matches the given criterion or where the order in which objects are found is not important. This
is because the order in which matching objects are found by these functions is undefined.

Asanother example, imagine that the personal productivity application mentioned earlier includesthe ability
to list all those people that the user is scheduled to meet with today. |magine also that the day object or
calendar class defines a function that |ocates the proper set of person objects. This function, let’s call it

Fi ndTodaysPeopl e, locates al the appointment objects for today, identifies the people with whom the
appointments are scheduled, and then locates and returns those person objects. This may sound complicated,
but, in fact, it is quite easy to implement.

Searching the database for room object having a specific room number requires only that the condition of the
search be defined using a CNeol DSel ect object. The database'sf i ndCbj ect function can be used to locate
this object. An example of how this could be implemented is as follows:

CRoom * CAppoi nt ment : : Fi ndRoon(const Neol D aRoomnNo)

CNeol DSel ect key(aRoomNo) ;
CRoom * room

room = (CRoom *) gNeoDat abase- >f i ndCbj ect (kRoom D, &key, FALSE);

return room

}

The foregoing code assumes that rooms are located in classes that have aclass ID of kRoomn D and adata
member with atag of pRoom

Apply a Function to a Set of Objects

Occasionaly, an application needs to apply afunction to a set of objects until a particular condition is met.
Situations where this might be a useful thing to do include serialy searching for a particular object, or
counting objects having a specific state.

There are several different waysin which this can be accomplished with NeoA ccess. The recommended way
would beto create aniterator object and iterate over the set of objectsor usetheiterator'sdoUnt i | function.
Another way would be to pass a function pointer to one of the Fi ndBy X functions of CNeoPersist. Y et
another alternative would be to use the database'sdoUnt i | Obj ect function. Thisfinal option isthe one
we will discussin the remainder of thistopic.

Imagine a situation where an application needs to count the number of objectsin adatabase. Y ou could do
thissimply and quickly by using thedatabase’ sget Cbj ect Count function, but assumethat the application
would rather iterate over each object and count each of them as they are encountered. Consider the example
given below:

NeoAccess Technical Overview 19

Technical Overview

20

voi d *Count Obj ect (CNeoCol | ecti on *aNode, const short aOfset, void *aParam

/1 Count this object.
(*(long *)aParam ++;

return nil;

}

I ong Count Obj ect s(CNeoDat abase *aDat abase)
{

I ong count = O;

/1 Count all objects in the database.
aDat abase- >doUnti | Cbj ect(nil, kNeoPersistlD, TRUE, CountObject, &count);

return count;

}

Look first at the implementation of Count Obj ect s. It callsthe database object’sdoUnt i | Obj ect
function. The fourth argument of this call is a pointer to afunction, Count Cbj ect , which is shown just
above Count Qbj ect s.

Count oj ect ignoresitsfirst two arguments, but treatsits third as a pointer to along integer variable,
which isincremented each time Count Obj ect iscalled.

Let's examine the parameters of doUnt i | Cbj ect closely. The first argument, whichisni |, can refer to
an object in the class list to be searched. If it did refer to an object, then the function would be invoked for
that object and al objects following it inits class list. The fact that Count Obj ect s hassetittoni |
indicates that Count Obj ect should be called for all objects of the class.

The second argument isaclass ID. Thisindicates the class of objects to be searched. In this case, it has been
set to refer to the base persistent class CNeoPersist. If the first argument had not been ni | , then the classto
search would have been the starting object’ s class and this second argument would be ignored.

The third argument indicates whether objects that are subclasses of the class indicated by argument one or
two should also be searched. Thefact that Count Cbj ect s hasset thisto TRUE meansthat all objectsin the
database will be counted.

Aswe' ve aready seen, the fourth argument is the function to be invoked. The prototype of this function is
defined by NeoTest Func 1. The parameters passed to thisfunction and thevalueit returnswill be discussed
in more detail in the following example.

Thefifth and final argument is a parameter value passed to Count Cbj ect , in this case a pointer to along
integer. This can be any value that the application and function agree upon.

Let’slook at another example that makes use of the first two parameters and the return value.

NeoAccess Technical Overview

Technical Overview

cl ass CMessage: public CNeoPersistNative {

public:
Bool ean imsPri ority(void);
pr ot ect ed:
/** | nstance Variables **/
| ong fPriority;
s

void *Di splayPriorityMsg(CNeoCol | ecti on *aNode, const short aCffset,
const NeolLockType alLock, void *aParam
{

Bool ean done = FALSE;
TNeoSwi zzl er <CMessage> nsg;

/1l CGet a pointer to the indicated object.
nmsg = (CMessage *)aNode->get Obj ect (aOffset);
if (msg) {
/1 If it is a priority message, then present it to the user.
if (msg->isPriority())
done = Di spl ayMsg(mnsg);
}

/1 Stop searching upon user request.
return (void *)done;

}
voi d DisplayPriorityMgs(CNeoDat abase *aDat abase)
/1 Present priority nmessages until the user says to stop.

aDat abase- >doUnti | Obj ect(nil, kMessagel D, FALSE,
(NeoTest Funcl) Di spl ayPriorityMsg, nil);

Consider amessaging application that auser hasjust launched. Itsinitialization processinvolves querying the
user’ s message database to locate and present priority messages one at atime until the user says to stop.

Thisapplication defines asubclass of CNeoPersist, agrossly abbreviated definition of which isshown above.
Theroutine Di spl ayPri orit yMsgs searches the message database by using the database's

doUnt i | Obj ect function. It indicates that theroutine Di spl ayPri ori t yMsg should beinvoked for
each message object in the database.

The interesting part of this example iswhat happensin Di spl ayPri ori t yMsg. Notice thefirst two
arguments are a pointer to a CNeoCollection object and ashor t integer. The class CNeoCollection isthe
abstract base class of all collection classes. It is used internally by NeoAccess to keep track of your
application-specific objectsin a database.

The second argument to Di spl ayPri ori t yMsg indicates the specific object of interest to

Di spl ayPri orityMsg. Thefunction Count Obj ect in our first example didn’t need to refer to the
object itself; it was only interested in its existence. However, Di spl ayPri ori t yMsg needsto accessthe
object directly, so it usesthe get Obj ect function to obtain a pointer to it.

Di spl ayPri orit yMsgisinterestedintheobject only if itisapriority message. If not, thefunction simply
returns.

Noticethe object has an additional reference added to it whilethe object isreferenced by Di spl ayMsg. This
isbecausetheget Cbj ect function of CNeoCollection does not add areference before returning the object.
It isthe caller’ sresponsibility to do so. Di spl ayPri ori t yMsg uses aswizzler to manage this reference.

NeoAccess Technical Overview 21

Technical Overview

9
Thereturn value of Di spl ayMsg indicates whether the user isinterested in seeing any additional priority
messages. The function doUnt i | Cbj ect stopsimmediately and returnsto its caller any non-zero value
returned by the function.

Object 170

Most C++ compilers include a standard set of classes which implement an input/output facility whichis
referred to as a stream. The most common stream class supports the transfer of basic C data types such as
integers, floating-point numbers and character strings to and from afile or to a console window.

While streams have been around for some time, our understanding of them continues to evolve. We know,
for example, that we need different types of streams for different purposes. Application-specific
environments may benefit from the use of a stream subclass which also supports application-specific data
types, imaginary numbers, for instance. Other environments may find useful a stream that transfers data not
to afile but across a network pipe or an inter-process communications channel. As you can see from these
two examples, there are two dimensionsin which stream derivations can occur. One dimension addresses the
type of data being accessed. The other defines the source/destination of the data.

NeoA ccess uses streamsto address theissue of where datais coming from or going to. The abstract base class
CNeoStream provides an interface through which basic data types can be read in or written out. This base
classis subclassed to derive another abstract stream class, CNeoContainerStream. A container stream is
further subclassed to create CNeoFileStream, which is used in reading from and writing afile. Other
subclasses of CNeoContainerStream might be used to create OLE, OpenDoc or JavaBean containers.

Theinterface to CNeoPersist, the base persistence class of NeoAccess, includes a pair of object serialization
member functions, r eadCbj ect andw i t eCbj ect , which are used to serialize the persistent state of
objects to and from NeoA ccess streams. Subclasses of CNeoPersist override these member functions so that
their persistent data members are also preserved and restored appropriately. Embedded classes also include
readCbj ect andw i t eCbj ect member functions. For the most part, r eadCbj ect and

wri t eObj ect functions can be written without regard for the type of stream being used, though the
iSRPCStream and i sCont ai ner St r eammember functions can be used to determine the general type of
stream being used. The advantage of this device-independent approach is that a single set of member
functions can be used to preserve and restore a class's state to any number of different stream types.

Some application frameworks which are supported in the standard NeoA ccess rel ease include their own set
of stream classes. In order to make use of these streams, persistent objectsin these frameworks usually need
to override their own set of serialization member functions. In order to avoid asking developersto override
multiple sets of serialization member functions, NeoA ccess environment-specific support for these
frameworks often includes a stream class which maps the native application framework’ s stream classinto a
CNeoStream derivative, which calls an object’'sr eadObj ect andwr i t eCbj ect member functions.

The NeoAccess database class, CNeoDatabase, provides an extremely powerful mechanism for accessing
persistent objects. These objects use persistence properties provided by their base class, CNeoPersist. And
together these three base classes — CNeoContainerStream, CNeoDatabase and CNeoPersist — create an
incredibly powerful and high performance database engine which is both extensible and easy to use.

Just asthere is a need for different types of streams when reading from and writing to different types of
sources and destinations, the semantics of referring to alocation differs depending on whereit is. For
example, the process of specifying alocation in the file system is probably different than specifying a host
location on the Internet. A location is used to designate a place where a stream object can read from and/or
be written to. NeoAccess includes a set of location classes, al having a base class of ENeol ocation, which
are used to specify the location of datawhich isto be accessed using a NeoAccess stream. A container
location’s get St r eamfunction is used to create the proper type of stream given the specified location.
While the CNeoDatabase class includes convenience member functions of specifying the operating system
fileinwhich the databaseisto reside, the database' sget Locat i on andset Locat i on member functions
can also be used to designate the location of the database’ s container.

22 NeoAccess Technical Overview

Technical Overview

Persistent Strings

NeoA ccess includes three types of persistent strings — a character array, a native string and an embedded
string. NeoA ccess devel opers need to recognize the strengths and weaknesses of each of these persistent
string types. This understanding will allow you to determine which type to use in a particular situation.

Character Arrays

Character arrays, also called ‘' C strings,” are a standard built-in type used by virtually every C and C++
application. C strings are represented internally in al runtime environments as an array of bytes terminated
by anull character. A character array data member of an object will be declared either as afixed sized array
of characters(char []) or asapointer to an array of charactersallocated discontiguously from the object proper
(char *). The amount of memory used by acharacter array isaconstant regardless of the current length of the
string. In contrast, using a character pointer may require that a separate memory allocation be done for the
character value, though the size of the memory block need only be aslarge asthe length of the string plusthe
terminated null character. Character arrays are usually not as limited as to how long the string value can be.

NeoA ccess supportsthe use of character arraysin persistent objects. Pointersto strings stored discontiguously
from the persistent object (char *) are supported though ENeoString embedded objects (described below).
Reading and writing a C string array data member of a persistent object is done by using ther eadSt r i ng
andwr i t eSt ri ng functions of the stream.

Character arrays have afixed maximum size. This maximum size is the amount of space allocated for the
array, both in memory and in the database. Though all operating environments include very strong support
for C strings, the use of native strings (described bel ow) may offer advantagesin cross-platform devel opment
situations. For example, some runtime environments don’t include case insensitive C string comparison
operations. Another factor to consider when deciding whether to use C stringsis that the performance cost of
determining the length of aC string increases linearly with the length of the string. Finally, because character
arrays are stored contiguously in a persistent object, an additional i/o operation is not usually needed when
reading and writing C strings.

Native Strings

Some execution environments (the Macintosh in particular) support a data type called a Pascal string. A
Pascal string isacharacter array (unsigned char []) with the first byte being the length of the string value.
Pascal strings are not necessarily null terminated (though whenever NeoA ccess manipul ates Pascal strings, it
triesto put anull character at the end if there is room).

NeoA ccess has a concept of a native string. A native string is a Pascal string in those environments which
support Pascal strings. In all other environments (everything but the Macintosh), anative string isa C string.
The maximum length of anative string valueis 255 characters. Reading and writing anative string array data
member of a persistent object isdone by usingther eadNati veStri ngandwiteNativeString
functions of the stream.

CNeoString is a class which implements a native string. The interface to this classisthe samein all
environments, though the implementation may differ depending on whether a particular environment
supports Pascal strings.

Native strings have many of the same properties as C strings, including a fixed maximum size equal to the

amount of space allocated for the array, strong support in all operating environments and efficiency from an
i/o perspective. However, the maximum size of anative string is never more than 255 characters. On the plus
side, the performance cost of determining the length of anative string is fixed regardless of the string length.

The use of native strings is recommended only for applications which include the Macintosh as one of the
supported platforms, where the string will be used by an operating system or framework construct expecting
Pascal strings.

Embedded Strings

One of the problems with both C strings and native strings is that the amount of space they occupy, both in
memory and in the database, is fixed regardless of the string’ s value. Further, the fixed size nature of these

NeoAccess Technical Overview 23

Technical Overview

string types dictate a maximum length. The solution C++ developers commonly use to resolve this dilemma
isto useachar * datamember which refers to a non-contiguous block of memory containing the string. Y et,
the logistics associated with managing this discontiguous string can be problematic, and persistence issues
only complicate matters further.

NeoA ccess includes an embedded string class called ENeoString which is used to manage a persistent
variable-length string value much likeachar * datamember would in a non-persistent environment. The
string value managed by an ENeoString object occupies a variable amount of space in the database and in
memory. The maximum length of an ENeoString value is extremely large — two gigabytes. The

readCbj ect andwri t eObj ect functions of the ENeoString are used to read and write these embedded
strings.

The maximum size of an embedded string is very high, making them best suited for strings that may grow
over time or which will have alength greater than 32 bytes on average. Another advantage is that the amount
of space used by an embedded string in memory isaround 18 bytes plusthe current length of string. The space
used in a database by an embedded string is 14 bytes plus the current string length. Because the value of an
embedded string isstored internally asa C string, al C string operations supported in aparticular environment
are also available for embedded strings. However, the performance cost of determining the length of an
embedded string is fixed regardless of the string length.

Because the string value is stored discontiguously from the persistent object in memory and in the database,
additional memory allocations and i/0 operations are hecessary when bringing the string into memory and
when writing it out to the database. Changing the string length al so necessitates that the space previously
allocated for the old value in memory and, if permanent, in the database be freed and new space be allocated
for the new length.

A final disadvantageisthat ENeoString isan embedded class. Given the limited support C++ hasfor function
delegation, persistent objects with embedded data members must override several member functions so asto
explicitly delegate to its embedded data members.

Collection Classes

Most application frameworks include a set of collection classes which are used to manage the rel ationships
that exist between objects and other datain the application. Arrays and linked lists are two types collection

classes that you might have worked with before. Database indices and part lists are two types of collections
used heavily by NeoA ccess-based applications.

The abstract base classfrom which all NeoA ccess collection classes are derived is CNeoCollection. The only
immediate subclass of CNeoCollection which is currently included in the standard NeoAccessreleaseis
CNeoNode, which is the abstract base class from which all extended binary tree (or simply btree) node
collection classes are derived.

Btrees

24

Much of the power NeoA ccess has for organizing objects in a database, including indexing and part lists, is
obtained through the derivation and use of btree objects. As such, some of the more powerful uses of
NeoAccess can't be realized without first looking in greater detail at NeoAccess's btree capabilities.

NeoAccess Technical Overview

Technical Overview

Inode
L »
Inode Inode Inode

Pl1? AR AdAY 21 IRINS

/ [\ []
4 A ry

L eaf L eaf Leaf Leaf Leaf

o|(w|w|® o|w|®|® o(w|® o|(w|w|® o|®

An Extended Binary Tree

A btree consists of aset of node objects organized into atree structure. Each node is a separate C++ object
with two or more branches (we call these branches entries). The set of nodesin atree can be partitioned into
two groups, inodes and leaf nodes. Inodes provide the tree with structure. They are the glue — the means
through which the individual index nodes are connected. Leaf nodes provide the tree's content.

There are two general types of btree leaf classes. One whose entries refer directly to some other target object
iscalled adirect btree. We call btreeswhose entries do not refer to target objectsindir ect btrees. Thetarget
objects, which leaf nodes refer to, are sometimes called the fruit of the tree.

Note that not all node entries are alwaysin use. The number of entriesin anode that are used is called its
count. Note that if a node has any unused entries, they are at the end of the entry array of that node. The
proportion of entriesin atree that are used is referred to asthe tree' s density. The number of levels between
the root node and the leaf node furthest down in the tree isreferred to as the tree’ s depth.

Theroot of abtree can itself be aleaf node. Inodes are necessary only when the leaf entriesin the tree are
contained in more than one leaf object. Each leaf node in the figures shown in this discussion can have up to
four entries (though NeoAccess nodes normally contain 32 entries). The figure below shows atree with a
single node having a count of three. This node is both the root and a leaf.

L eaf
o|o|®

A Single Node Extended Binary Tree

While atree structure may initially seem like unnecessary complexity, btrees are actually an ideal construct
on which to construct database technology. While linked lists and arrays provide optimal serial accesstimes,
no construct can provide faster random accessto large collections than btrees. Another advantage btreeshave
over other collection classesisthat if abtreeis persistent, then only that portion of thetreethat isof immediate
interest needs be in memory at one time. So persistent btrees work well in limited memory situations, even
when dealing with huge collections of objects.

Using Nodes

Extended binary trees consist of ahierarchy of nodes. Each node has aheader and aset of entries. CNeoNode,
the base class from which all node classes are derived, makes no assumptions about how many entriesarein
anode, their content or even the size of each entry. This class simply provides a set of abstract member
functions for manipulating the header and entries of a node. Subclasses override these member functions to
implement and manage the specific capabilities of a node derivative.

NeoAccess Technical Overview 25

Technical Overview

Though CNeolnodeisthe class of nodethat isaways used to provide structure within abtree containing more
than one node, different kinds of btrees may contain different types of leaf nodes. But most searching and tree
traversal member functions are unaware of the class of nodes that it may refer to. They rely on the abstract
operations supported by CNeoNode to perform specific tasks. For example, there are situations where a
function has a pointer to an object of an indeterminate class and that function would like to instantiate another
node of that same class. It would use the get Anot her function of the node to create an object of the same

type.

Inserting and del eting entriesin anode, expanding atreeto include more nodes or collapsing atreeinto fewer
nodes, all of these abstract operations are provided through the CNeoNode interface.

|ndex Classes

I ndices organize objectsin some sorted order. While indices are depicted at various points in the NeoA ccess
documentation as a single block, they may in fact consist of multiple collection objects, often btrees.

NeoA ccess uses btrees heavily because random searches need to be as fast as possible, and no construct can
provide faster random access to large collections of persistent objects than can btrees.

The order in which objectsin anindex are sorted is determined by the Key Manager function of theindex’s
leaf nodes. ThekNeoCanSuppor t operation of theKeyManager function returns aselect key that can be
used to uniquely identify the entry (or entriesin an inverted index) which refers to the given object.

Primary and Secondary Indices

26

Though all objects of aparticular class are usually grouped by class, NeoA ccess provides the ability to
organize aclass in more than one sorting order. To illustrate this feature, consider one way in which the
Windows Explorer, the Macintosh Finder or any other hierarchical file system browser might beimplemented
using NeoA ccess.

Root

]

Doc Sub

App
Sample File System Containment Hierarchy

Supposethefile system contains a set of four files having a configuration as depicted in the figure above. The
file system assigns a4-byte value to uniquely identity each file. Each file also tracksthe identity of its parent.
That isto say, the class CFile hastwo indices.

For example, Sub isthe parent of App, and Root is the parent of both Doc and Sub. So in this example, file
objects are sorted by file ID and by parent ID. The parent ID of Root is zero, because it is the root of thefile
system tree.

Thefirst index, which is called the primary index and is aways a direct btree, organizesfile objectsin
ascending by ID. Sorting objects in ascending order by ID isin fact the default sorting order of objectsin a
NeoA ccess database. The second index sorts file objects by parent ID. Any index beyond the primary index
is caled asecondary index. Secondary indices are always indirect btrees. (Direct and indirect btrees were
discussed in greater detail in a previous discussion titled “Btree Classes.”)

NeoAccess Technical Overview

Technical Overview

9

Classes are themselves btrees— and much of NeoAccessisimplemented as btrees. The entry of the classnode
that refersto the CFile class keeps track of all the indices of that class.

Class
q_ T T | T
CNeol DIndex
| dentity 1 4
Object Pointer Y, \

A File System’s Primary Index

The class node and primary index are depicted in the above figure. Note how the class node entry refersto
the primary index tree, whose leaf entries refer directly to the file objects.

Class

CNeoUL onglndex

Parent | dentity o | 1 11 3
Identity 1 2 3 4
Z Z Z 7
/ / / 7
; /CN?LDfnd% 7 ; d
| dentity 1 2 3 4
Object Pointer / / \ \

/ Lo\
&) @))

NeoAccess Technical Overview 27

.\

Technical Overview

A File System’s Complete Set of Indices

The second diagram shows that the CFile entry of the class node actually refersto both index trees. But note
that the entries of the secondary index don’t refer to thefile objectsdirectly. Instead, they contain the identity
values corresponding to entriesin the primary index. These identity values are used to locate the file objects
by using the primary index.

L ocating an object using a secondary index is atwo step process. Thefirst step involves locating the proper
entry in the secondary index. The second step usesthe value found in the secondary index to locate the object
using the primary index.

Type-Specific Indices
There are three general characteristics of an index class which makes it different from other index classes:
[The order in which entries are sorted in the index,
[l The data members that make up each entry of the index, and
[Thetype of data member upon which entries in the index are keyed.

Asindicated earlier in this discussion, the order in which entriesin an index are sorted is defined by the
KeyManager function of the index class.

The set of data members that needs to be present in every index entry is dependent on how entries are sorted
intheindex and whether theindex isdirect or indirect. If entries are sorted by name, then the name value must
either be included as adata member of each index entry or the name value will need to be obtained by asking
the object that the entry refersto. If the index isindirect, the key value used to access the object using the
primary index must be included in the entry. (The primary key is normally the ID of the object.)

Most NeoAccessindex classes are type-specific. A type-specificindex isaleaf index classthat sorts entries
based on a data member of a particular type. For example, CNeoL onglndex is atype-specific index classthat
sorts entries based on along integer value.

Using atype-specific index class to organize application-specific objects involves calling the addKey
function on the metaclass object for that class. The arguments passed to addKey include the class ID of the
index class and atag value identifying which data member of the application-specific object to key on. For
example, acall to the metaclassfor the CEmployee classto sort employeesby salary, using CNeol ongSelect,
would be constructed as follows:

net a- >addKey(kNeoLongl ndexl D, pSal ary);

Thelong index uses pSal ar y tag to obtain the salary value using CEmployee'sget Val ue function.

Key Point

When using type-specific indices, it's very important that the get Val ue function be
overridden by the persistent class being indexed. Indices use this function to obtain the data
member value during database insertions, searches and deletions.

Developerswill rarely need to create their own index classeswhich are direct descendents of CNeoNode. The
type-specific index classes that are included in the standard NeoAccess release are indirect btree classes that
assume objects are sorted primarily by object ID. Type-specific indices can be used as index leaf nodes or
part list leaf nodes.

String Index Classes

NeoA ccess includes three string index classes — CNeoStringlndex, CNeoNativeStringlndex and
CNeoBlobStringlndex. There are costs and benefits associated with using each of these classes. Developers
should refer to the discussions of each of these classesin determining which most aptly suitsthe requirements
of their application.

28 NeoAccess Technical Overview

Technical Overview

Consolidated Indices

It is sometimes useful to sort all objects having a given base classin asingle index. Consider thefile system
example once again. Users usually want to view afolder’s contents in alphabetical order without regard for
the type of file. Though simply adding athird index to all classes having a base class of CFilewould result in
all folder objects being sorted separately from all application or document objects.

All objects contained in an index normally have acommon leaf class. (Once again, the leaf class of an object
isits most specific class.) A consolidated index is one which contains objects having a common base class
but whose leaf class may differ. The class to which the consolidated index is attached is called the owner
class of that index. A consolidated index is created by configuring metaclass objects of classes having the
common base class to have an index owner class ID equal to the class ID of the base class.

Dynamically Adding and Removing Indices

Experience has shown that the searching capabilities of an application may vary from one release to another.
Indeed, some applications may find it desirable to dynamically add and remove indices based on the needs of
individual users of an application. One user of ageographical information system (GIS) may beinterestedin
the topographical features of aregion and therefore ask that thisinformation be indexed. Another user of the
same database may be more interested in accessing seismic dataquickly. Theupdat el ndi ces function of
CNeoDatabase changes the indexing of objectsin a database to that which is defined by the metaclass table.

Creating Domain-Specific Index Classes

Developers can sort objects in an application-specific order by creating domain-specific index classes. The

index classesincluded in the Developer’ s Toolkit serve as excellent examples of how thismight be done. The
default index class, CNeol DIndex, isaprimary index that sorts objectsin ascending order according to object
identity. Any of the type-specific index classes are good secondary index examples. A concatenated index is
one which sorts objects according to a major key value and one or more minor keys.

CNeoParentNNamel ndex is a concatenated index which has amajor key or parent 1D, aminor key of name
and a second minor key or object ID.

Choosing a String Index

NeoA ccess includes three type-specific index classes — CNeoStringlndex, CNeoNativeStringlndex and
CNeoBlobStringlndex. Several factors need to be considered when deciding which class to use to index
objects based on a string value. These factors include the string type of the key attribute as well as
performance, memory and file space implementations.

Thefirst consideration in thisdecisionisthe string format in the persistent object. If the key value of theindex
isaC string (with a maximum length no greater than kNeoMax St ri ngLengt h,) then CNeoStringlndex

may be the best choice. If the key is a native string, then CNeoNativeStringlndex may be appropriate. In all
situations, CNeoBlobStringlndex might be the best choice.

The maximum size of the string value, as well as memory and file space usage, also needs to be considered
when choosing the proper string index class. CNeoStringlndex entries have a maximum length of 31
characters. The maximum length of a CNeoNativeStringlndex entry is 255 characters. The maximum length
of a CNeoBlabStringlndex is effectively two gigabytes.

Each entry in a CNeoStringlndex uses 36 bytes, both in memory and in the database. Each
CNeoNativeStringlndex entry is 260 bytes. Each CNeoBlobStringlndex entry in memory will use 18 plusthe
length of the string, while in the database it will use 14 bytes plus the string length. (See the discussion of
“Persistent Strings” for full details.)

Each CNeoBlobStringlndex entry has an ENeoString data member —with all the costs and benefits that it
implies. It should be noted, once again, that the value of an embedded string is discontiguous from other
persistent data and therefore requires an additional i/o operation if thisvalue is not already cached. This may
have performance implications when searching a blob string index.

Developers actually have two additional aternatives to the three string index classes included with
NeoAccess. One option is to develop a domain-specific index class which more accurately reflects the
specific needs of your application.

NeoAccess Technical Overview 29

Technical Overview

Another possibility isto use CNeolDList. Though the entries of thisindex don’t include a string value, the
index’sget Ent r yVal ue function can obtain the key string value by using the primary index to find the
object fruit theentry refersto then, using thefruit object’ sget Val ue function, obtain the string value. While
there are significant performance costs associated with this approach, it would eliminate the need to duplicate
the string value in each index entry, aswell asin the fruit object proper.

Object Versioning

NeoA ccess includes constructs to facilitate sharing of objects within an application. The object reference
count and busy bit are two mechanismsthat provide this support. NeoAccess includes an additional construct
called versioning that provides even greater concurrency support. Here' s how it works.

A persistent object’'sconmi t function is used to synchronize the on-disk state of dirty objects with their in-
memory state. When object versioning is enabled, by defining thegNeoVer si ons symbol when compiling
NeoA ccess, persistent objects contain a permanent data member, f Ver si on, whichis changed each time
objects are updated on disk.

Time Client A Server Client B
to 01
tl 01 =O1— 01
t2 Ol Ol —01> Ol
t3 01 —Op» o)) 01
ty 02 O2 =O01— O1 Refused!

Object State Transition Diagram for Client/Server Application

The server portion of aclient/server application based on NeoA ccess might make use of object versioning to
manage contention between two clientsthat attempt to modify asingle object. Consider thetransition diagram
shown above. At timet1 client A requests the state of object O. The server responds to this request by

returning the state O1. At t2 Client B also requeststhe current state of O. Given that the state of the object has
not been changed since t1, O1 isreturned. Client A modifies O and commits the change at t3. The changeis

accepted by the server because the object state given by Client A at tO. However, the act of committing this
change causes the state of O to be set to O2. Client B attemptsto submit its own changeto O at t4. However,

the object state sent with this commitment is O1. If the server were to accept this change it might cause the
change submitted by client A at t3to belost. The server recognizesthe version conflict and refusesClient B's
change.

Other possible uses of versioning might include a journalling-based recovery mechanism, transaction
processing support and dynamic meta-object protocols.

Exception Handling
NeoA ccess uses exceptions if something goes wrong during an operation. An exception is an abnormal

condition that occurs during program execution. Possible exception conditions include running out of
memory, or attempting to read or write beyond the end of afile. NeoAccessis designed to minimize the

30 NeoAccess Technical Overview

Technical Overview

9

occurrence of exceptions. However, should one occur, NeoAccess will clean up as best asit can and then
continue to signal the exception. Y our application objects should set up NEOTRY and NEOTRYTOblocksto
capture and recover from an exception when it occurs (NEOTRYTO blocks are described below).

There are two types of exceptions most likely to be raised by NeoAccess: resource limits and programming
errors. The frequency of these conditions can be greatly reduced by thoughtful design and implementation of
your application.

Resource limits occur when your application exhausts aresource avail abletoit. The resource most commonly
exhausted is memory. NeoAccess, the class library and the operating system all provide mechanisms for
optimizing memory usage and recovering from shortages. See the topics “ Temporarily Permanent Objects”
and “Purging Objectsin the Cache” for more information on memory management in NeoA ccess.

Another resource limit that israrely encountered, though one for which devel opers should be prepared, isfile
space. Thelength of adatabasewill grow asyour application adds objectstoit. Eventually, the database could
consume all the available space on the volume. This situation is problematic because NeoAccess will usually
encounter this error asit sets up to commit the changes made to a database that already has too many objects
init. The proper way to handle this situation is to advise the user to either remove some objects from the
database or do a SAVE As of the database using another volume which has enough file space to hold the
database.

Programming errors may also cause exception conditions. Of course all production applications are
sufficiently tested to eliminate these errors before the application ships. Y our applications should, never the
less, be prepared for programming-induced exceptions to occur.

Thetraditional exception handling construct isaNEOTRY block. A NEOTRY block takes the following form:

/1 Prepare to do sonething that nmay cause an exception.

NEOTRY {
/1 Do sonmething that may cause an exception.

}
NEOCATCH {
/1 Do whatever it takes to clean up after yourself.

}
NECENDTRY;

/1 Do whatever it takes to clean up after yourself.

The problem with this construct is that the code inside the NEOCATCH block is often similar to (or exactly
the same as) the clean up code just below the NEOENDTRY statement.

Rather than duplicating this code, NeoA ccess provides a NEOTRYTO, NEOCL EANUP and NEOENDTRYTO
construct.

/'l Prepare to do sonething that nay cause an exception.

NECTRYTO {
/1 Do sonething that may cause an exception.

}
NECCLEANUP {
/1 Do whatever it takes to clean up after yourself.

}
NECENDTRYTO,

This allows your application to avoid duplicating clean up code. Object code space is therefore reduced as
well.

NeoAccess Technical Overview 31

Technical Overview

o

Temporary Obijects

In the course of execution, some applications generate vast amounts of intermediate resultsin memory. Much
of this data may be disposable, asit can be reproduced at application startup time using other persistent data.
Offscreen bitmaps in graphics programs and lookup tables in algorithmically-intensive applications are two
situations where this might be the case. While data of this sort can be recreated, in low-memory situations it
might be more efficient to cache the data to disk, rather than destroy and recreate it later.

NeoA ccess makes it easy for an application to organize and access application-specific temporary data; so
easy that you might want to consider using it to organize and cache objects that don’t persist after the
application quits. The advantage of doing this would be a potential reduction in memory requirements,
because these objects could be written to disk and then be purged from memory when available memory
becomes critically low.

Marking an object temporary is done by setting itsf Tenpor ar y bit. Temporary objects are managed just
like permanent objects. As such, they can be added and removed from a database using addbj ect and
renove(hj ect , respectively. And, they need to be marked dirty when their in-memory state is changed
from their state on disk.

NeoA ccess provides the ability to mark an entire class of objects temporary by using the database's

mar kCl assTenpor ar y function. All objects of atemporary class are removed when the database is
opened and closed — whether or not thef Tenpor ar y bit of each object is set. Objects belonging to a non-
temporary class, but having their f Terrpor ar y bit set, will be deleted when the application calls the
database'sr enoveTenpOhj ect s function with a non-zero parameter value.

Object Caching

32

NeoA ccess supports a sophisticated object caching mechanism, which greatly improves access times by

minimizing disk activity. NeoA ccess keeps objectsin memory even after an application deletesitsreferences
toit. If the application tries to access the object again later, NeoAccess can locate it without having to reread
it from disk. Caching canimprove accesstimesby as much as 20 timesin somesituations. (Y our application’s

mileage may vary.)

The object cache uses memory not otherwise being used by the application. NeoAccess limits the size of the
object cache to something close to the amount specified by the static variable

CNeoPer si st : : FCacheSi ze. If anallocation causesthe cache to exceed thislimit, the pur ge function
of all open NeoA ccess databases will then be called to “garbage collect” objects already in the cache so that
the allocation can proceed. The single argument to pur ge is apointer to along integer that indicates how
much memory is needed. The database will attempt to free up at least this much memory. Depending on how
NeoA ccess has been configured, pur ge may free more memory than is currently needed. Thisisdonein
order to reduce the frequency of low memory situations, while simultaneously maintaining the useful ness of
the object cache.

Each database object has an associated “ purging action” state. The purging action of a database defines
whether to commit the database before or during garbage collection. The purging action state of a database
can be set using the set Pur geAct i on function of the database. The default valueis

kNeoNoPur geAct i on, which indicates that the database shouldn't be committed during garbage
collection. A value of kNeoConmi t Bef or ePur ge causes NeoAccess to purge the database before
attempting to purge objects from the cache. A value of kNeoComni t Bef or eG- owZone causes

NeoA ccess to purge the database if the required amount of space to be purged can not be satisfied.

Note

Due to concurrency issues associated with committing and garbage collecting in a multi-
threaded environment, the purge action state of a database must be kNeoNoPur geAct i on
when NeoA ccess has been built with the compile-time symbol gNeoThr eads defined.

NeoAccess Technical Overview

Technical Overview

Schema Evolution

C++ isastatic language. That is, the definition of classesis defined at compile time. Y et an unavoidable
reality of software development is that things change. The expectations of users are dynamic. NeoAccess
includes several mechanismsthat application devel opers can use to evolve the performance and feature set of
their applicationsat runtime and in future updates. This support includesthe ability to add and removeindices
on aclass and even to change or remove persistent data members of persistent classes. This process of
changing the structure of a pre-existing database over time s called schema evolution.

The header at the beginning of every NeoA ccess database contains a user format and NeoA ccessformat. The
user format is obtained by calling the database's get User For mat function. Thisvalue indicates which
version of the application this database was written by. The database'sget NeoFor mat function returnsthe
NeoA ccess rel ease the database was written by. Taken together, these two values can be used to determine
the format of NeoA ccess and application-specific objectsin thefile.

Format Objects

Format objectsdefinethe format of persistent objectsread from and written to the stream. Every NeoA ccess
stream object refersto a pair of CNeoFormat objects. Thef | nput For mat data member of a stream refers
to the object which defines the format of objectsread from the stream. Thef Qut put For mat datamember
of astream refers to the object which defines the format of objects written to the stream.

The database header isread into memory when the database is opened. Using the information obtained from
the header, the database's open function usesthe application'sget For mat function to create and assign the
input and output format objects, which will be used by the database's container stream to read and write
objects in the database. The domain-specific application class can override the get For mat function to
instantiate and return domain-specific objects, which are subclasses of CNeoFormat. These subclasses may
override or extend the capabilities to the base format class to support domain-specific formatting constructs.

Once input and output format objects are assigned to the stream, the input stream'sconpar eC asses
function is called to determine whether the database's conver t function should be called to update the
format of objects in the database.

Having done this, the input stream's conpar el ndi ces function is called to determine whether the
database's updat el ndi ces function should be used to update the indexing of objects in the database to
reflect that of the application's metaclasses.

Converting the Format of Objects in a Database

NeoA ccess's schema evolution support includes the ability to convert the format of objectsin a database
written by different versions of a NeoA ccess-based application. As new versions of an application are
released, the format of objects in databases written by other versions of the application may change.
Developers may want to update the format of these objects to reflect those changes.

Key Point

Newer versions of an application are not REQUIRED to convert a database created by an earlier
release of the application, aslong as it does not require that new persistent data members be
preserved if modified. Ther eadCbj ect andwr i t eCbj ect member functions of persistent
classes in these applications that don't convert old databases need to be capable of reading and
writing objects in the old file format.

Once input and output format objects are assigned to the stream of a database, the input stream's

conpar eCl asses function is caled to determine whether the database'sconvert function should be
called to update the format of objectsin the database. The database'sconvert function callstheconver t
function of every object in the database.

If theformat of an object isthe samein both theinput and output formats, then the object'sconver t function
does nothing.

NeoAccess Technical Overview 33

Technical Overview

If the format of an object is different, yet the file space an object usesin thefileisthe samein both input and
output formats, then the object'sconver t function simply marks the object dirty, so that it iswrittenin the
new format the next time changes in the database are committed.

If the amount of space an object occupiesin the database differs between formats, then the object'sconver t
function will free the space allocated for the object in the input format and then allocate file space the object
needs given the output format.

Changing Obiject Indexing

NeoA ccess supports asecond form of schemaevolution, which isthe ability to change theindexing of objects
in adatabase. After theinput and output format objects are assigned to the stream of anewly opened database
and the format of objects in the database are converted if necessary, the input stream'sconpar el ndi ces
function is called to determine whether the database's updat el ndi ces function should be used to update
theindexing of objects in the database to reflect the state of the application's metacl asses.

The database'supdat el ndi ces function compares the indexing of the classes in the database to the
indexing defined by the metaclass table state. If any changes are found, then updat el ndi ces will add or
remove indices or re-index objectsin the database.

Note

The primary key of a persistent class can not be changed in a database which contains
permanent objects.

While updat el ndi ces may be called automatically in response to differences in the input and output
formats of a database, application devel opers can change the configuration of metaclass objects and call
updat el ndi ces at other times during execution of the application.

DynaObjects

C++isadtaticaly compiled language. C++ classes are therefore defined at compile time. NeoA ccess stores,
organizes and retrieves statically defined persistent C++ objects and data in a database. To the extent that
these objects are statically defined at compile time, so istheir layout in adatabase. To the extent that C++
class definitions can evolve from one release of an application to another, NeoA ccess includes schema
evolution constructs which allows the layout of objects in a database to also evolve between releases.

Some object-oriented languages, such as Small Talk and some Lisp-based environments, include the ability
to dynamically define and evolve classes at runtime. These environments al so support the ability to add and
remove data membersfrom individual objects. The programming interface to these dynamic object and class
evolution capabilities is sometimes referred to as adynamic meta-object protocol.

Object-oriented environments that support a dynamic meta-object protocol implement classes and objects as
acollection of attributes. An object containing a variable-length collection of attributesis called adyna-
object. A dynamic classisadyna-object the members of which constitute the default datamembers of objects
of that class. A dyna-object which representsaclassiscalled aprototype. Creating an instance of aparticular
classinvolves cloning the class's prototype. Default values of the newly created object are taken from the
attribute values of the prototype. Every attribute of a dyna-object has a symbolic name or tag. Resolving a
referenceto an attribute val ue involves searching the collection of datamemberslooking for onewith that tag
value.

The dynamic object support of NeoAccess, which is enabled when the compile-time symbol
gNeoDynahj ect isdefined, implements a persistent dynamic meta-object protocol. A dynamic class
inherits data members from its super class, if it has one. A dynamic class can even have a set of static
attributes. Some static attributes, such aclass name and super class 1D, are specific to theleaf class. But most
static attributes are shared by a base class and all subclasses. Both types of static attributes are supported.

Asisthe case with statically defined C++ classesin NeoAccess, the indexing of objects of a dynamic class
can be defined and even changed at runtime.

34 NeoAccess Technical Overview

Technical Overview

9

Persistent dynamic classes are defined on a per database basis. The class ID of adynamic classis assigned
when the prototype of the classis created in the database. Because different databases can contain a unique
set of dynamic classes, the metaclass table is not shared by all open databases when qNeoDynaChj ect is
defined. Instead, a new metaclass tableis created and initialized by the constructor of the database object.

Defining a Dynamic Class

The C++ base class of all NeoA ccess dyna-objectsis CNeoDynaObject, which isasubclass of CNeoPartMgr.
A dyna-object’s part list is used to maintain direct references to the attributes of the object. The

get C assl Dmethod of CNeoDynaObject returnsthe value of the dyna-object’sf Cl ass| Ddatamember.
A prototypeis a dyna-object with aclass 1D of kNeoPr ot ot ypel D. The object ID of aprototype isthe
class ID of the dynamic class the prototype defines.

Neol D cl assl D;
CNeoDynaChj ect * pr ot ot ype;
CNeoOAttribute * attribute;
CNeoMet adl ass * nmet a;

/'l Create a prototype for a dynam c person cl ass.
prot ot ype = dat abase->creat ePr ot ot ype(" DPerson");

/1 Add a couple of attributes to the prototype.
attribute = NeoNew CNeoLongAttri bute(pl Q 100);
prot ot ype->addAttribute(attribute);
attribute->unrefer();

attri bute = NeoNew CNeoULongAttri but e(pAge, 38);
prot ot ype->addAttribute(attribute);
attribute->unrefer();

/1 Sort people by 1Q Is this P.C?

cl assl D = prototype->get|D();

meta = CNeoMet aCl ass: : Get Met aCl ass(cl assl D);
nmet a- >addKey(kNeoLongl ndexI D, pl Q;

dat abase- >updat el ndi ces() ;

The database'scr eat ePr ot ot ype method creates a CNeoDynaObject object with aclass ID of

kNeoPr ot ot ypel D. Theobject ID of thisprototypeisobtained by calling the metaclass sGet UnusedI| D
method, which returns an unused class ID greater than or equal to kNeoFi r st Pr ot ot ypeC assl D. A
metaclassis created for this newly defined class. The attributes of the super class are added to the prototype
and the prototype is added to the database. A reference to the prototype is returned to the caller of

creat ePr ot ot ype.

All dynamic attributes have a C++ base class of CNeoAttribute. NeoAccess' s dynamic object support
includes type-specific subclasses of this base attribute class. TheaddAt t r i but e method isused to add an
attribute to a dyna-object. The symbolic name of an attribute is atag used to refer to the attribute in the
dynamic object. The value given to an attribute will be the default value of the attribute for new instances of
this dynamic class.

C++ classesinclude support for static data members. Some static attributes, such a class name and super class
ID, are specific to the leaf class. But most static attributes are shared by abase class and all subclasses. Both
types of static attributes are supported. An attribute’sset St at i ¢ method is used to indicate whether the
attribute is static and if so whether is specific to the leaf class or that class and all subclasses.

/1 Add a static attributes to the prototype.

attri bute = NeoNew CNeolLongAttri but e(pPopul ation, 0);
attribute->setStatic();
prototype->addAttribute(attribute);
attribute->unrefer();

NeoAccess Technical Overview 35

Technical Overview

Key Point

The value of astatic attribute is shared by all instances of a class. As such, static attributes
should be added only to prototypes, not dyna-object instances.

Defining the order in which objects of this dynamic class are to be sorted is done by using the addKey
method of the dynamic class' s metaclass object. Asisthe case when changing indexing of a static class, the
updat el ndi ces method should be called on the database if it contains objects of that class.

Working with Dynamic Objects in a Database

Once a prototype of adynamic classis configured in a database, working with instancesis very
straightforward. The process of creating adynamic object issimilar to creating any other type of C++ object;
you use the new operator to create a CNeoDynaObject object. A pointer to the database containing the
prototype and the class ID of the object to be created are the only arguments passed to the constructor. The
object created contains the attributes defined by the prototype, with their respective default values.

| ong 1Q
CNeoDyna(bhj ect * geni us;

/! Gve birth to a true geni us.
geni us = NeoNew CNeoDynaQbj ect (dat abase, cl asslD);

/1 She’'s not a genius unless her 1Qis greater than 160, right?
geni us- >get Val ue(pl Q kNeoLongType, & Q;
if (1Q < 160)

geni us->set Val ue(pl Q kNeoStringType, “180");

/1 Add her to the database.
dat abase- >addbj ect (geni us) ;
geni us->unrefer();

A dyna-object can be treated just like any other C++ object. The attribute values of both statically defined
persistent classes as well as dynamically defined ones can both be accessed using the get Val ue and

set Val ue virtual functions. In the dyna-object case, the fact that val ues are obtained from CNeoAttributes
stored in adirect part list is hidden using this generic interface.

Theinterna representation of an attribute value can sometime be hidden from an application. The
get Val ue and set Val ue methodswill make an effort to convert data between the internal format which
the attribute is stored in the database and the format referred to by application code.

Asisthe case with statically defined persistent classes, dyna-objects are added to the database using the
addObj ect method of the database. If the prototype of the dyna-object indicates that the object should be
sorted on an attribute which the object does not have, then the object is not added to that index.

KEY POINT

If adyna-object does not contain akey attribute value, then seaches which use the index which
the object is missing from will not match this object, even if the select key is configured to
match all objects.

Adding and Removing Attributes from a Dyna-Object Instance

Attributes can be added and removed from individual dyna-object instances at runtime. If an attribute on
which an object isindexed isremoved, then the entry for this object isremoved from that index. Conversely,
if akey attribute is added to a dynamic object, then the object will be added to the index at that time.

36 NeoAccess Technical Overview

Technical Overview

9

The internal format of an attribute value can change over time as attributes are added and removed from an
object or prototype. Care must be taken though to avoid asking for attribute values in incompatible formats.
There may also be some performance implications associated with converting to and from internal and
requested formats.

/1 As we grow ol der, our experiences count nore than | Q
/1 This will result in the object being removed fromthe | Q index.
geni us- >renoveAttribute(pl Q;

/1 She's a little sensitive about her age.

geni us- >renoveAttri but e(pAge);

attri bute = NeoNew CNeoStringAttri bute(pAge, "30-sonething");
geni us->addAttri bute(attribute);

attribute->unrefer();

Changing the Class ID of an Object

The class ID of adyna-object is defined by the value of itsf Cl ass| D datamember. Theset Cl ass| D
method can be used to change the class ID of a dyna-object. Because objects are organized in a NeoAccess
database by class, changing the class ID also involves re-indexing the object as defined by the metaclass of
that class.

/1 Change the class I D of a dyna-object to be a person.
meta = CNeoMet adl ass: : Fi ndByNane(“ DPerson”);

classID = neta->getl X);

dyna- >set C assl D(cl assl D);

Threads and Asynchronous I/0O

Personal computer operating systems are becoming ever more sophisticated. M odern execution environments
support asynchronous i/o operations and multiple cooperative threads of execution in a single process.

An asynchronousi/o function is one which schedules i/o which may not be completed until after thei/o
functionreturnstoitscaller. The application continuesto execute during the time between the operation being
scheduled and its completion. The parameters passed to the scheduling function includes a pointer to ani/o
completion routine, afunction called by the operating system when the i/o operation completes. Ani/o
completion routine typically releases resources used while the i/o operation isin progress.

A thread is an execution context within a process. The execution environment of atraditional application
includes such things as the current instruction pointer (also called PC value), an execution stack, adynamic
memory pool (also called a heap), a set of static memory values (also called globals), a set of open files and
so forth. Each thread in a multi-threaded process has a separate PC value, execution stack and set of globals,
though all threads in a process share the same address space and set of open files.

Therearetwo general classesof threads, cooper ativethreadsand preemptivethreads. A cooperativethread
operates much as cooperative processes do: each thread runs without interruption until it yieldsthe processor
to some other thread of process.

NeoA ccess includes optional support for execution environments which alow for asynchronous write
operations to afile. When enabled, this compile time option, named gNeoAsyncl O, can increase
NeoAccess' soverall throughput during the commit process. Thefile stream class maintainsafreelist of write
buffers. The stream obtains abuffer fromthe freelist, fillsit with data, schedulesthe write operation and then
continues execution while the write to the file takes place. When a write option completes, the completion
routine returnsthe buffer to the freelist. In thisway the file stream is able to schedul e as many asynchronous
write operations as there were write buffers. If the stream requests another write buffer when all of them are
in use by previously scheduled writes, the stream waits in atight loop until the completion routine of one of
the earlier scheduled write operations returns a buffer to the freelist.

NeoAccess Technical Overview 37

Technical Overview

While asynchronous write operations are possible in this environment, asynchronous reads are not. Thisis
because the application can not continue execution until aread operation completes because it needs the
results of that read in order to proceed. However, it is possible to take advantage of asynchronousreadsin a
multi-threaded environment because only the thread performing the read operation needs that information on
order to proceed. Other threads are able to proceed. The potential exists for dramatically increased overall
throughput through NeoA ccess in such an environment so long as other issues such as concurrency,
scheduling and context switching (which are collectively referred to as friction) don’t consume throughput
gains.

NeoAccess' s cooperative multi-threading support is enabled when built with the compile time symbol
gNeoThr eads defined. In this environment container streams obtain read and write buffersfrom afreelist
shared by all open container streams. Asynchronous write operations are performed pretty much as described
above, with the one exception that threads yield instead of looping when waiting for a buffer to become
available.

When operating in a multi-threaded environment, database objects are protected using a multiple-reader/
single-writer semaphore. Each function that enters the database must first obtain a reference lock of atype
appropriate to the kind of database operation being performed. Database query operations begin by obtaining
aread reference. Database update operations need awrite lock before they can proceed. Attempting to obtain
a database lock may cause athread to block. Blocked threads will be made ready as the resource they are
trying to obtain becomes available. The database’s| ock and unl ock member functions are used to obtain
and free database lock references.

Thread objects in a multi-threaded applications which use NeoAccess must be derived from CNeoThread
subclass which is native to the development environment being used. For example, if the application is built
using the PowerPlant application framework, then application-specific thread classes should has a base class
of CNeoThreadPP.

NeoA ccess thread objects preserves the state of various NeoAccess global variables between the time the
thread yields and when it regains control. For example, the value of the global variable gNeoDat abase,
which refersto the current database, can be different for each active thread. These globalsare preserved when
the thread yields the processor and restored when the thread regains control.

Laundry

NeoA ccess automatically keepstrack of which objects have changed in memory and therefore need updating
on disk. NeoAccess, in fact, supports two mechanisms which it can use to determine which objects need
updating.

The most straightforward way isfor it to ssmply mark the object dirty and then at commit time traverse the
classlist and index trees writing dirty objectsto disk.

Another scheme uses a construct called alaundry list to keep track of all dirty objects. Using alaundry list at
commit time can be much more efficient than not using one.

Laundry lists are enabled when NeoAccess is compiled with the symbol gNeoLaundr y defined.

Configuring NeoAccess

NeoAccessisvery configurable so that your application operates at peak performancein its unique execution
environment. Much of this configurability is due to the fact that you have complete source code. We believe
that NeoA ccessisthe best object-oriented database solutions available. However if you don’t agree, then you
can change whatever you don’t like. How’ s that for power?

kNeoMarkSize

NeoA ccess supports the ability to create databases larger than 4GB in this runtime environments that support
extended file lengths. This feature is enabled by defining the value of kNeoMar kSi ze to be 8 bytes. By
default KNeoMar kSi ze is4 bytes.

NeoAccess Technical Overview

Technical Overview

gNeoAsynclO
NeoA ccess includes optional support for execution environments which allow for asynchronous write
operations to afile. When enabled, this compile time option named gNeoAsyncl O, can increase
NeoAccess' soverall throughput during the commit process. Thefile stream class maintainsafreelist of write
buffers.

This symbol should be undefined unless qNeoThr eads is defined.

gNeoByteSwap

Define this constant when building NeoA ccess for use on a machine swaps the internal order of short integer
and long integer values. This symbol is either defined or undefined automatically in the platform-specific
header file.

gqNeoDebug

NeoA ccess source code has been instrumented with countless assertions which verify the integrity of the
system. These assertions are enabled when NeoAccessis built with gNeoDebug defined. If for some reason
you experience a problem when doing development with this symbol undefined, you will save yourself
countless hours of heartache by rebuilding with gNeoDebug defined.

A significant downside to having qNeoDebug defined is that NeoAccess will operate much slower than
when it is not defined. However most applications will continue to function even at these slower speeds.

Make sure that this compile time symbol is defined throughout the devel opment process but undefined before
building the final application.

gNeoDebugFreelist

When gNeoDebugFr eel i st isdefined NeoAccess maintainsadynamically allocated bit map in memory
each bit of which refersto aquantum (typically 8 bytes) of file space. If abit is on thisindicates that the file
space this bit refersto is allocated. When gNeoDebugFr eel i st isdefined NeoAccess will rigorously
verify that the bit map matches the state of the free list.

gqNeoDebuglO

Jeff Winkler, a user of NeoAccess, once spent an afternoon tracking down afile corruption problem which
ended up being caused by thewr i t eCbj ect function of one of his application-specific persistent classes
writing more bytes of data to the file than the value returned by that classsget Fi | eLengt h. In order to
simplify the process of finding such problemsin the future, he designed a class we now call CNeoDebugl O.
Jeff was kind enough to contribute this class for the benefit of all NeoAccess developers.

The debugging properties of CNeoDebugl O objects are enabled by defining the compile time symbol
gNeoDebugl O. Objects of this class are used to verify that ther eadObj ect andwri t eObj ect member
functions of a concrete persistent class never read or write more bytes than specified by their

get Fi | eLengt h function. Consider the implementation of CMyClass::readObject below:

voi d CNeoMyC ass: :readObj ect (CNeoStream *aStream const NeoTag aTag)
{

CNeoFor mat *format = aStream >f | nput For nat ;
CNeoDebugl Cchecker (aStream FALSE, this);

Neol nherited::readObj ect (aStream aTag);
NeoAssert (format);
f Teacher | D = aStream >readlLong();

if (format->f NeoFormat <= kNeo2POFi | eFor mat)
(voi d)aStream >readLong();// O d data nenber, no |onger used.

NeoAccess Technical Overview 39

Technical Overview

By default, this compile time symbol is defined whenever gNeoDebug is defined.

gqNeoDebugMemory

Some development environments include debugging mechanisms which track memory usage. This support
isenabled in NeoA ccess-based applications by defining the compiletime symbol gNeoDebugMenor y. See
the “Core Leaks’ discussion in the Debugging Tips portion of this manual for more information.

qNeoDynaObject

Though C++ isastatically compiled language, NeoAccess includes a feature which allows applications to
dynamically define persistent classes at runtime, create instances of these classes and even add and remove
data members from instances. This feature is called the DynaObject facility and it is enabled when the
compile-time symbol gqNeoDynaQbj ect isdefined. See the documentation of the DynaObject facility in
the Extras folder of the NeoAccess release.

gNeoThreads

NeoAccess' s cooperative multi-threading support is enabled when built with the compile time symbol
gNeoThr eads defined. In this environment container streams obtain read and write buffersfrom afreelist
shared by all open container streams. Threads performing asynchronous write operations yield instead of
looping when waiting for a buffer to become available. This symbol undefined by default.

gNeoVersions

40

When the qNeoVer si ons compile-time symbol is defined, every persistent object has a four-byte data
member which isused asaversion number. Every time an object ismarked dirty, the object’ sversion number
may change to reflect the fact that the object’ s state has changed. This construct is most useful in shared
environments. We recommend that applications be built with qNeoVer si ons defined.

NeoAccess Technical Overview

Tutorial

o

Tutorial

|nUoducﬂon

The structure and flow of control in applications built using NeoAccess is different in some ways from other
applications. One major differenceisthat most other applications use the “inhale/exhale” approach to object
persistence. That is, the entire contents of afile are read into memory as the document is created. As soon as
the contents are in memory thefileis closed, only to be reopened when changes are saved, at which point the
entirefileistotally rewritten. NeoA ccess-based applications, on the other hand, leave the file open during the
life of the document. Objects are brought into memory as needed. Updating a database involves writing out
only those objects that have changed, not the entire database.

A great deal of effort has goneinto making NeoAccess as easy to use as possible. The structure of NeoAccess
alows complexity to be hidden from devel opers so they can be as productive as possible.

Thefact that NeoAccessis a cross-platform database engine al so contributes to some differences in the way
that an application is structured. Every effort has been made to keep the interface to NeoA ccess classes as
consistent as possible across platforms. So even if you are developing a cross-platform application using
different application frameworks, the NeoAccess interface will stay pretty much the same.

This section reviews a sample application, called Laughs, which comes with the NeoAccess Developer’s
Toolkit. Carefully reading with section will help you to see how NeoAccessisintegrated into and used in an
application. While the sample document and application classes referred to in this discussion may not be the
same as your development environment, many of the principles shown are applicable in al environments.

Note

It might be a good ideato bring up the Laughs project on your computer screen as you read
through thistutorial. Thiswill give you the opportunity to peruse the source codein its entirety
as you progress through the tutorial.

Laughs

The NeoAccess Developer’s Toolkit includes several versions of a sample application called Laughs. The
value of Laughsisitsutter simplicity. Itsimplementation is uncomplicated because of its almost total lack of
auser interface; some versions doesn’'t even have an event loop. We'll exploit this clarity in the discussion
that followstoillustrate the steps devel operstakein building an application that uses NeoAccess. Whilefrom
a user-interface perspective Laughsis simplistic, it actually uses some of the more advanced features of
NeoA ccess such as secondary indices, consolidated indices, blobs, part lists, swizzlers, different database
formats and iterators.

Asyou proceed through this tutorial you should keep in mind the fact that our objective in the development
of Laughs was to provide a sample application which uses a cornucopia of NeoAccess features but which is
also easy to understand. Some constructs are more complex than they might have been had we not tried to
show the multitude of NeoAccess features in a single application as we have.

Laughs is asimple database application. It creates a database to which it adds some objects. It then finds a
pre-existing database from which it retrieves and displays some of the objects the database contains. Asisthe
case with most C++ applications, mai n isatrivial routine. If you ignore some initialization that the
application framework requires, mai n simply creates an application object, runsit, and finally deletes it
before heading out the door.

NeoAccess Technical Overview 41

Tutorial

int main(void)

CLaughsApp *app;

/'l Power Pl ant asks that the followi ng be done before creating an app.
InitializeHeap(1l);

InitializeTool box();

(voi d) new LG owZone(20000);

/1l Create an application object, runit, then delete it.
app = NeoNew CLaughsApp();

app->Run() ;

del ete app;

return O; /1l Time to go hone.

}

Theapplication classfor Laughsisitself fairly plain. It isasubclass of the native NeoA ccess application class,
CNeoAppNative (Refer to the framework-specific header file of NeoAccess to determine how
CNeoAppNative is defined.). It includes a constructor and an override of the Run function from the native
application class.

The constant kLaughs Si g isthe signature of the application. The Macintosh Finder and file system both
use thisin assigning the appropriate icon to the application file and for matching documents with the
applications that created them and are capable of opening them. Developers in other environments may use
this value to refer to constructs unique to this application.

const OSType kLaughsSi g = ' Neo6' ;
cl ass CLaughsApp : public CNeoAppNative {
public:
/** | nstance Menber Functions **/
CLaughsApp(voi d);
vi rtual CNeoDoc * creat eDocunent (voi d) ;
virtual void openDocumnent (FSSpec *aSpec);
3

WEe'll look at the application classin more detail later. But first, let’s examine the bizarre personalities one
findsin Laughs.

The Persistent Classes

CNeoPartMgr HCPerson |
[CNeoPersist HCNeoPersistNative

CJoke |

Inheritance Tree for Persistent Laughs Classes

Laughs defines seven persistent classes: CNeoPersist, an optional class generically referred to as
CNeoPersistNative, CPerson, CJoker, CClown, CJoke and CPie. These classes have the ancestral
rel ationships depicted in the above diagram.

42 NeoAccess Technical Overview

Tutorial

CNeoPersist

CNeoPersist is an important NeoAccess class. It provides general persistence properties to its subclasses.
CNeoPersist provides a comprehensive set of features. NeoAccess devel opers should be sure to review the
discussion of this powerful classin the reference section of this document. Just to understand what the basic
issues are, let’' stake acursory look at afew elements of this class. An abbreviated class definition of
CNeoPersist might appear as follows:

cl ass CNeoPer si st

.
public:
/** Instance Menber Functions **/
vi rtual ~CNeoPersi st (void) {}
virtual Neol D get Cl assl D(voi d) const;

static CNeoPersist * New(void);
virtual |ong get Fi | eLengt h(const CNeoFormat *aFormat) const;

/** 1/ O Menber Functions **/
virtual void readObj ect (CNeoStream *aStream const NeoTag aTag);
virtual void writeQbject(CNeoStream *aStream const NeoTag aTag);

/** Searchi ng Menmber Functions **/

static void * Fi ndByl D{ CNeoDat abase *aDat abase,

const Neol D aC assI D, const Neol D al D,

const Bool ean aDeeply, NeoTestFuncl aFunc,

voi d *aParam const NeolLockType alock);
static void * Fi ndEver y(CNeoDat abase *aDat abase,

const Neol D aCl assl D, const Bool ean aDeeply,

NeoTest Funcl aFunc, void *aParam

const NeoLockType alLock);

/** Persistence Menber Functions **/

virtual void set| D(Neol D al D);

voi d setDirty(const NeoDirty aReason = kNeoChanged);
/** Schema- Evol uti on Menmber Functions **/

virtual NeoMark convert (CNeoFor mat *ad dFormat, CNeoFormat *aNewFor mat);
/** Concurrency Menber Functions **/

voi d referTo(void);

NeoRef Cnt unrefer(void);

voi d set Busy(voi d);

voi d set Unbusy(voi d);

#i f def qNeoDebug

/** Debuggi ng Menber Functions **/
virtual const void * verify(const void *aVal ue) const;
#endi f

}s

The default destructor is significant because its virtual definition means that the destructors of all subclasses
of CNeoPersist will also be virtual.

Most persistent classes can be referred to by aunique classID. A classID issimply afour-byte value much
like aresource type. The pair of member functions, get G ass| D and New, provide atwo-way mapping
between a class ID and an object of that class. The instance function get Cl ass| Dwill return the class ID
of aparticular object. The static function Newis afactory function used to create an object of a particular
class. Concrete subclasses of CNeoPersist should override these functions to return the proper class ID and
instance, respectively.

NeoAccess Technical Overview 43

Tutorial

44

NeoA ccess needs to determine the amount of file space taken up by objects of a particular class. It figures out
an instance’ s file space requirements by calling get Fi | eLengt h. Concrete subclasses will override this
function. These overrides will simply add to the requirements of the parent class the amount of file space
needed to preserve the persistent attribute values of that class. The format object is passed to this function so
that adifferent value can bereturned by get Fi | eLengt h depending on the layout of this class of object in
a database having this format.

NeoA ccess utilizes a streams-based obj ect serialization mechanism to preserve and restore the persi stent state
of objects. Persistent classes overridether eadQbj ect andwr i t eCbj ect member functionsto seriaize
and retrieve the persistent values of the class.

The most significant feature that NeoAccess provides that simple object persistence mechanisms can not is
quick and efficient access to specific objectsin apotentially huge set of objects. The most common interface
for accessing objectsin NeoAccess is through static functions such asFi ndEver y and Fi ndBy| D.
Subclasses may provide other static functions similar to these which provide simple access based on other
selection criteria. The CShoe class of a shoe store management application might, for example, include a
static function, Fi ndBy Si ze, which locates shoe objects by size.

Every persistent object isassigned an object I D. ThisID can be unique among all objects of aparticular class,
or there can be multiple objects having the same ID. NeoA ccess organizes objects in a database primarily by
class. The default sorting order of all objects of aclassisin ascending order by object ID. The ID of an object
isset, not surprisingly, by using the set | Dfunction. If the ID of an object isn't set by the application at the
time the object is passed to the database’ saddCbj ect function, then NeoAccess will assign the object an
ID unique to that database.

Running applications are often dynamic systems. The state of persistent objects change in response to user
actions. NeoA ccess provides a simple mechanism to manage change during execution. Member Functions
that modify persistent attribute valuesuse the set Di r t y function to indicate that the object’s state in
memory has changed and that that state needs to be committed to disk. NeoAccess keeps track of all dirty
objects and commits changes all at once. This means that the contents of a NeoAccess database on disk is
always consistent between one commit and the next. Some applications commit changes only when the user
chooses the Save or Save As... menu items. Others implement a much more urgent and frequent policy.

A significant factor in limiting complexity in an application is the management of concurrency. One way to
view concurrency control sees it as a combination of: 1) shared access, 2) serialization of change and 3)
cooperation to accomplish atask. CNeoPersist includes two sets of member functions which facilitate shared
access and serialized change. Getting software componentsto cooperate in order to finish atask isthe charter
of dependency mechanisms which are often provided by application frameworks and sophisticated
collaborative computing constructs.

NeoA ccess keeps track of which persistent objects the application has pointersto. Thisis done through the
use of an abject reference count in every persistent object. The static member functions Fi ndEver y and
Fi ndBy| D, for example, add areferenceto every object they find. Application code usesther ef er To and
unr ef er member functionsto keep thisreference count consistent. When one component of an application
passes a persistent object pointer to another component, the reference count of the object needs to be
incremented accordingly. Thisisdoneby callingr ef er To. Conversely, references can be deleted by calling
theunr ef er function. NeoAccesswill take care of deleting the object from memory once the last reference
to it has been removed. Y ou never use the del et e operator on a persistent object.

An easier way of managing reference counting issuesisto use a swizzler to point to a persistent object rather
than asimple object pointer. A swizzler isan object which can be used to refer to another object in adatabase.
A swizzler can bethought of asa*“smart pointer.” Using swizzlersinstead of object pointersremovesthe need
for application devel opersto explicitly add and remove object referencesto persistent objects. Thisisbecause
the assignment operator of a swizzler removesits reference to the object it was referring to and adds a
reference to the object being assigned to it. The swizzler destructor, which is even called when a C++
exception is thrown, aso removes references as the swizzler goes out of scope.

Serializing change is necessary in order to avoid putting an object in an inconsistent state due to concurrent
updating by two independent tasks. NeoA ccess provides a simple mechanism for avoiding this type of

inconsistency through the use of theset Busy and set Unbusy member functions. A task should check the
busy state of the object before trying to modify its state. If the object is not busy, the task should then mark

NeoAccess Technical Overview

Tutorial

9

the object busy to signal that it isin an inconsistent state during the update process. The object should be
marked unbusy once the update is compl ete.

CNeoBusyFocus objects are used to manage the busy state of an object consistent in the event of afailure. A
busy focus object records the busy state of an object before setting the object busy. The destructor of the
focus, which is called even if a C++ exception is thrown, resets the object’ s busy state.

CNeoPersistNative

The core of NeoAccess was written to be environment-neutral so as to facilitate portability. NeoAccess
portability isimplemented in part through the measured use of environment-neutral and environment-specific
classes.

Consider the class diagram for persistent classes in Laughs. CNeoPersist is an environment-neutral class.
That means that the interface to CNeoPersist makes no assumptions about what environment it might be
compiled or executed. However, providing a seamless integration of CNeoPersist into some application
frameworks might require adding additional overrides beyond the general support provided in CNeoPersist.

Borland’ s ObjectWindows Library (OWL) application framework, for example, asks that al concrete
subclasses of TObject override thei sA function. One way to provide this support would be to compare an
object’s class ID with the given argument value. A basic implementation could do this simply by calling the
object’sget d assl| Dfunction. Thiswould eliminate the need for other persistent classes from also having
to overridei sA.

NeoA ccess provides this intimate level of support in humerous environments by optionally defining
environment-specific subclasses of CNeoPersist. The compile-time symbol CNeoPer si st Nat i ve is
defined to refer to this subclass. All other persistent classes are meant to be subclasses of CNeoPersistNative.
In environments which don’t require an environment-specific subclass, CNeoPersistNative is defined to be
the same as CNeoPersist.

CNeoPartMgr

Objects in memory often refer to other objects. In order to be effective, a database engine needsto provide
mechanisms for preserving these relationships between objects. NeoAccess includes several such
mechanisms. A class called CNeoPartMgr can be used to group objectsinto a collection called apart list.
Application-specific subclassesinherit this one-to-many grouping capability by deriving from CNeoPartMgr
or by including an ENeoPartMgr data member in a persistent class definition.

CNeoPartMgr isin fact a“convenience class.” It issimply asubclass of CNeoPersistNative which has adata
member of type ENeoPartMgr and function overrides to manage the persistence of this data member.
ENeoPartMgr is aclass of object designed to be embedded as a data member of a CNeoPersist subclass. Part
management responsibilities are delegated to this data member. For example, a sales processing application
might include a persistent CProduct class which refersto the set of suppliers of this product and to the set of
customers who have purchased this product. While CProduct could be implemented as a subclass of
CNeoPartMgr, it would more likely be an immediate subclass of CNeoPersistNative with two ENeoPartMgr
data members — one of which manages the set suppliers and the other the set of customers.

A part object can refer to zero or more subparts. These subparts may themselves be parts from which further
subsubparts descend. This hierarchical structure, which is sometimes called acontainment hierarchy, is
incredibly useful construct to use in the design of an application. Indeed, one of the initial motivations for
object database systemswasjust such aconstruct for usein CAD/CAM applications. In order toillustrate part
lists and their use in an application, the personalities in Laughs descend from CNeoPartMgr.

NeoAccess Technical Overview 45

Tutorial

46

Inode

Parts List Parts List

//r R\ R\'\
Part Manager with Attached Part List

CPerson

CPersonisasubclass of CNeoPartMgr. CPersonisan abstract class, which meansthat no objectsof thisclass
are ever actualy created in memory. Its purpose is to define those properties and responsibilities that all
people have in common. All people, for example, have a name, an 1Q and are able to pronounce their name
on demand. Names can be a maximum of 255 characters and are stored in the instance variable f Nane.
Taking an optimistic view of the world, everybody also has a skill, though CPerson |eaves the definition of a
particular person’s skill to specific subclasses.

Every person maintains areferenceto their father using aswizzler. As mentioned earlier, swizzler sare smart
pointers. They are objects that act like pointers, but they’ re more powerful that standard C pointersin that
they can be used to refer to objects that might not even be in memory.

Developersrefer to the reference material in the NeoA ccess Reference Manual for each of the superclasses
to determine which functions of these superclasses need to be overridden. CPerson has a base class of
CNeoPartMgr, whichisitself asubclass of CNeoPersist. The sectionstitled “ Subclassing CNeoPartMgr” and
“Subclassing CNeoPersist” articul ate the compl ete set of functions to be overridden.

An abbreviated definition of CPerson is as follows:

NeoAccess Technical Overview

Tutorial

9
class CPerson : public CNeoPartMyr
{
public:
/** | nstance Menber Functions **/
CPerson(const CNeoString &Name = "",
const CNeoString &aFatherNane = "",
const unsigned short alQ = kDefaultl Q;
virtual |ong get Fi | eLengt h(const CNeoFornat *aFormat) const;
/** Access Menber Functions **/
CPerson * get Fat her (voi d) ;
voi d get Fat her Name(CNeoStri ng &aNane) ;
vi rtual Bool ean get Val ue(const NeoTag aTag, const NeoTag aType,
voi d *aVal ue);
voi d print Name(voi d) const;
voi d set Fat her Nane(const CNeoString &Nanme = "");
vi rtual Bool ean set Val ue(const NeoTag aTag, const NeoTag aType,
const void *aVal ue);
virtual void skill (void) = 0;
/** 1/ O Menmber Functions **/
virtual void readObj ect (CNeoStream *aStream const NeoTag aTag);
virtual void writeQbj ect (CNeoStream *aStream const NeoTag aTag);
/** Persistence Menber Functions **/
vi rtual Bool ean revert (void);
virtual void updat e(CNeoPer si st *a(bj ect) ;
/** Schema- Evol uti on Menmber Functions **/
vi rtual NeoMark convert (CNeoFor mat *ad dFormat, CNeoFormat *aNewFor mat);
/** Purge Menmber Functions **/
virtual Bool ean pur ge(NeoSi ze *aNeeded) const;
prot ect ed:
CNeoString f Nane;
TNeol DSwi zzl er f Fat her;
CNeoString f Addr ess;
unsi gned short f1Q
s

const Neol DkPer sonl D= 25;

Note that kPer sonl Disthe unique class ID for this class. All negative class IDs and those between 0 and
19 are reserved by NeoAccess for use by the core engine. Class IDs for an application should begin at 20.
Class IDs can never exceed the value of kNeoCl asses (which is defined in the header file for
CNeoMetaClass). Some applications may need to increase the value of KNeoCl asses inorder to meet this
requirement.

The implementation of the CPerson constructor is simplicity itself. It simply sets the state of the person
according to the arguments of the constructor.

NeoAccess Technical Overview 47

Tutorial

48

CPer son: : CPer son(const CNeoString &Nane, const CNeoString &aFat her Nane,
const unsigned short alQ

set Nane(aNane) ;
set Addr ess(kDef aul t Addr ess) ;

setl QalQ;
set Fat her Nanme(aFat her Nan®) ;

}

NeoAccess includes arather powerful and flexible streams mechanism which is similar to theiostreams
library which is a standard part of most C++ development environments. The two i/o functions of CPerson,
readoj ect andwr i t eCbj ect , areused primarily by NeoAccessto serialize data members. Each class
which contains data member values which must be preserved, overrides these two member functionsto read
inand write out thesevalues. Ther eadObj ect function should aso be overridden by classeswhich contain
“transient” data members which must be initialized each time an object isread in from disk.

NeoAccess streams are “typed”. Thismeansthat adatum isread in and written out according to itstype. Y ou
would use astream’sr eadLong functionto read al ong integer andwr i t eShort towriteashort
integer to the stream. There are anumber of advantages to this approach, the most significant isthat it allows
issues such as buffering and byte-swapping to be encapsul ated in the stream’ simplementation and away from
the view of application developers.

CPerson’simplementations of r eadChj ect andwr i t eObj ect areasfollows:

NeoAccess Technical Overview

Tutorial

voi d CPerson::readObj ect (CNeoStream *aStream const NeoTag aTag)
{
CNeoFor mat * f or mat = aStream >f | nput For mat ;
CNeoDebugl O checker (aStream FALSE, this);

NeoAssert (format);
Neol nherited::readObj ect (aStream aTag);

aSt ream >readNati veSt ri ng(f Name, sizeof (f Nanme), pNeoNane);
if (format->getUserFormat () == kLaughsFormat2 ||
f or mat - >get User Format () == kLaughsFor nat 4)
aStream >readNati veString(fAddress, sizeof (fAddress), pAddress);
el se
/1 1f fAddress was not persistent in this version of the database
/1 then we'll use the default val ue.
f Address = kDef aul t Addr ess;
if (format->getUserFormat() == kLaughsFormat3 ||
f or mat - >get User Format () == kLaughsFor nat 4)
flQ = aStream >readShort (pl Q;
el se
/1 If flQwas not persistent in this version of the database
/1 then we'll use the default val ue.
fl1Q = kDefaultl Q

f Fat her. readObj ect (aStream pFather);
}

voi d CPerson::witeObject(CNeoStream *aStream const NeoTag aTag)
{

CNeoFor mat * f or mat = aStream >f Cut put For mat ;
CNeoDebugl O checker (aStream TRUE, this);

NeoAssert (format);
Neol nherited::witeQoject(aStream aTag);

aStream >witeNativeString(fNanme, sizeof(fNane), pNeoNane);

if (format->getUserFormat () == kLaughsFormat2 ||

f or mat - >get User Format () == kLaughsFor nat 4)

aStream >witeNativeString(fAddress, sizeof (fAddress), pAddress);
if (format->getUserFormat () == kLaughsFornmat3 ||

f or mat - >get User Format () == kLaughsFor nat 4)

aStream>witeShort(f1Q plQ;

f Fat her.writeChj ect (aStream pFather);
}

The CNeoDebugl O object at the top of these two member functionsis a debugging construct used to verify
that the number of bytes read from and written to the stream isless than or equal to the value returned by the
class'sget Fi | eLengt h function. This check is performed only when the qNeoDebug and
gNeoDebugl Ocompile-time symbols are defined. Devel opers should always use CNeoDebugl O objectsin
theimplementation of r eadObj ect /wr i t eCbj ect member functions of concrete classes.

In real applications the layout of objects on disk may change from release to release — some data members
which used to be transient might become persistent, others which were persistent may no longer be, and so
on. NeoA ccess providesapowerful schema-evol ution mechanism using CNeoFormat objects. Format objects
contain enough information for the application to decide which data members are persistent in the given
version of the database. By using format objects, devel opers can support the reading of older versions of their
databases as well as converting databases between formats.

The implementation of CPerson is based on the following assumptions:
[] There are 4 different user-formats,

NeoAccess Technical Overview 49

Tutorial

[Thef Name data member is persistent in all user-formats,

Ll Thef Addr ess member is persistent only in user-formats k Laughs For mat 2 and
kLaughsFor nat 4,

[Thef I Qmember is persistent only in user-formats kLaughsFor mat 3 and kLaughsFor mat 4

Theimplementations of ther eadObj ect andwri t eCbj ect member functions of CPerson begin by
giving the parent class, CNeoPartMgr, an opportunity to read/write its data members. Based on the format of
the given stream, it then callsthe stream’ si/o functionsto restore/preserve the persistent datamembers of this
person. Note that ther eadCbj ect /wri t eCbj ect member functions of thef Fat her arecalledto
restore/preserve the persistent state of the swizzler.

When you read the more complete discussions of streams elsewhere in this document you'll see that
readCbj ect andwr i t eCbj ect can aso be used to read and write streams other than just file streams.
TheaTag value of the stream’si/o functionsis given to facilitate the use of 1/O streams that require these
values. We'll ignore thisissue in this tutorial other than to say that the tag value of each data member in a
class should be unique within that class and its parent classes.

Virtually all the complexity of theget Fi | eLengt h functionismotivated by the desireto support multiple
database versions, as described above.

| ong CPerson::getFil eLengt h(const CNeoFormat *aFormat) const
{
| ong ength = Neol nherited:: getFil eLengt h(aFor mat)
+ si zeof (CNeoStri ng)
+ f Fat her. get Fi | eLengt h(aFor mat) ;

swi tch (aFormat->getUserFormat()) {
case kLaughsFornat 1:
br eak;

case kLaughsFor nat 2:
I ength += sizeof (CNeoString);
br eak;

case kLaughsFor mat 3:
| engt h += si zeof (unsi gned short);
br eak;

case kLaughsFor mat 4:
| ength += sizeof (CNeoString) + sizeof(unsigned short);
br eak;

defaul t:
NeoAssert (FALSE); // unknown fornat!
}

return | ength;

}

Obj ect-oriented programming puristswill tell you that all data members of a class should be protected. Some
will even tell you that they should all be private. Y ou should access data val ues using accessor functions.
CNeoPersist includes a pair of member functions, get Val ue and set Val ue, which are the mother of all
accessor functions.

Theget Val ue function can be used to obtain the value of a data member of an object. TheaTag argument
isatag which identifiesthe datamember, and aTy pe refersto the format in which the valueisto bereturned.
Thefinal argument to thisfunction, aVal ue, isapointer to abuffer into which the value should be returned.
If aTy pe isthe same asthe type of the data member specified by aTag, the direct assignment is performed.
Otherwise, Convert Type iscalled to convert the datamember’ s native type to the requested type. CPerson
overrides this function to allow its data members to be accessible via this mechanism.

NeoAccess Technical Overview

Tutorial

Bool ean CPerson:: get Val ue(const NeoTag aTag, const NeoTag aType, void *aVal ue)

Bool ean result = TRUE;

switch (aTag) {
case pNeoNane:
if (aType == kNeoNativeStringType)
*(CNeoString *)aVal ue = f Nane;
el se
Convert Type(& Nane, kNeoNativeStringType, aVal ue, aType);
br eak;

case pAddress:
if (aType == kNeoNativeStringType)
*(CNeoString *)aVal ue = f Address;
el se

Convert Type(& Address, kNeoNativeStringType, aVal ue, aType);

br eak;

case plQ
if (aType == kNeoUShort Type)
*(unsi gned short *)aValue = fIQ

el se
Convert Type(& 1 Q kNeoUShort Type, aVal ue, aType);
br eak;
defaul t:
result = Neol nherited:: getValue(aTag, aType, aVal ue);
}
return result;
}

Just asget Val ue can be used to obtain the value of an abstract data member, the set Val ue function can
be used to set avalue. Once again, theaTag argument is atag which identifies the datamember, and aTy pe
refersto the format of the value as given by the aVal ue argument. If aType isthe same as the native type
of the data member specified by aTag, the direct assignment is performed; otherwise, Convert Type is

used to perform any possible conversion.

NeoAccess Technical Overview

ol

Tutorial

Bool ean CPerson:: setVal ue(const NeoTag aTag, const NeoTag aType,
const void *aVal ue)

Bool ean result = TRUE;

switch (aTag) {
case pNeoNane:
if (aType == kNeoNativeStringType)
fName = *(CNeoString *)aVal ue;
el se
Convert Type(aVval ue, aType, &f Nane, kNeoNativeStringType);
br eak;

case pAddress:
if (aType == kNeoNativeStringType)
f Address = *(CNeoString *)aVal ue;
el se
Convert Type(aVval ue, aType, &f Address, kNeoNativeStringType);
br eak;

case pl Q
if (aType == kNeoShort Type)
fl1Q = *(short *)aVal ue;

el se
Convert Type(aVal ue, aType, & 1 Q kNeoShort Type);
br eak;
defaul t:
result = Neol nherited::setValue(aTag, aType, aVal ue);
}
return result;
}

NeoA ccessautomatically tracks changesto objectsin memory. These changes may later be committed to disk
or reverted using the database object’'sconmi t orr evert member functions, respectively. An object’s
revert functioniscalled during the reversion process so that it's state can be reinitialized and read back
into memory from disk. CPerson overridesr evert sothat thef Fat her swizzler isaso reverted.

Bool ean CPerson::revert(void)

return (Bool ean) (fFather.revert() && Neolnherited::revert());

}

An object’ supdat e function is called to copy the state of one object to another. Thisis some times useful
when transferring data from one database to another or when otherwise duplicating data. The aCbj ect
argument is assumed to be the same class of object ast hi s. The immediate data members of CPerson
assume the values found in aCbj ect by overriding this function.

NeoAccess Technical Overview

Tutorial

voi d CPerson: : updat e(CNeoPersi st *aCbj ect)
Neol nheri t ed: : updat e(albj ect) ;

fName = ((CPerson *)aCbject)->f Nane;

f Address = ((CPerson *)aChject)->f Addr ess;
fl1Q = ((CPerson *)alhject)->f1Q

f Fat her . updat e(& (CPer son *)a(bj ect) - >f Fat her);
}

Most of the remaining member functions of CPerson are simple accessor functions. But acouple of them are
interesting enough to note here.

Theget Fat her function usesthef Fat her swizzler datamember to return a pointer to the CPerson who
isthe father of this person. This function simply returns a doubly casted pointer. The first cast, to a
CNeoPersistNative pointer, is necessary in order to invoke the casting operator of the swizzler object. The
second cast, to a CPerson pointer, is needed in order to match the return value of the get Fat her function.

CPer son *CPer son: : get Fat her (voi d)

{
return (CPerson *)(CNeoPersistNative *)fFather;

}

Thepri nt Nane function usesthe neoPr i nt f macro to print the person’s name on st dout .

voi d CPerson:: printNane(voi d) const
char str[256];
sprintf(str, "Nane is %" NeoEOL, (char *)fNane);

neoPrintf(str);

}

It's probably also worthwhile to note that the get Cl ass| D and New member functions have not been
overridden by CPerson. Thisis because only concrete subclasses of CNeoPersist need these overrides.

CJoker

CJoker and CClown are two concr ete subclasses of CPerson. Concrete classes are those for which objects
can be allocated during execution.

A joker isatype of person that is particularly good at telling jokes. (Actually, the jokes they tell aren’'t that
funny!) The definition of CJoker is as follows:

NeoAccess Technical Overview 53

54

Tutorial

const Neol D kJoker| D = 26;
cl ass Cloker : public CPerson
{
public:
CJoker (const CNeoString &Name = "",
const CNeoString &FatherNane = "");
static CNeoPersist *New(void);
Neol D get Cl assl D(voi d) const;
/** Joker Member Functions **/

voi d skill (void) const;

voi d f or get Joke(const Cloke *aJdoke);

Cloke * get Joke(const 1 ong aCffset) const;

| ong get JokeCount (voi d) const {return getListCount();}

voi d | ear nJoke(Cloke *aJdoke);
b
The constructor passes its arguments on to its parent, CPerson. It also specifies that the default 1Q of ajoker
is150 — generous at best. Aswe saw earlier, CPerson isasubclass of CNeoPartMgr. Hence, it includes a part
list data member. The constructor for CJoke specifiesthe base class of al subpartsto bekJokel D(theclass
ID of joke objects) by caling set Cbj C assl D.
CJoker:: Cloker (const CNeoString &Name, const CNeoString &aFat her Nane)

CPer son(aNane, aFat her Nane, 150)

{

set Obj A assl D(kJokel D) ;
}

Concrete persistent classes override the New, get Cl assl Dand get Fi | eLengt h member functionsto
create the proper type of object and return an object’s class ID, respectively. CJoker doesn’t override

get Fi | eLengt h becauseit doesn’t have any additional persistent data members other than those inherited
from CPerson.

CNeoPer si st *CJoker: : New(voi d)

return NeoNew Cloker();
}

Neol D Cloker: : getd assl D(voi d) const

return kJokerl D,

}

Teaching ajoker a new joke is accomplished by using the function | ear nJoke. (Teaching it ajokethat is
actually funny is beyond the scope of thistutorial!)

We already know that jokes are kept in the joker's part list. By default, parts are sorted in alist in ascending
order by 1D, though other types of part lists could be used instead to sort objectsin some other order. Adding
ajoketo ajoker's part list involves simply calling the joker’'saddToLi st function.

NeoAccess Technical Overview

Tutorial

voi d Cloker: : | earnJoke(Cloke *aJoke)

/1 Add the joke to this joker's part |ist
addTolLi st (aJoke) ;
}

Getting ajoker to forget ajokeissimilar to the process of teaching it one. Thef or get Joke function simply
callsthejoker'sdel et eFr onLi st function. Note though that removing ajoke from ajoker's part list does
not remove it from the database entirely. Jokes can be shared (read: stolen) by other jokers. Just because one
joker decidesto forget ajoke doesn’t mean that all other jokers must also do so.

voi d Cloker::forgetJoke(const Cloke *aJoke)

/1 Renmove the joke fromthis joker's part list
del et eFronli st (aJoke);

/1 Note: This joke is still in the database!

/1 To renove the joke conpletely, we would say...
/1 if (fMark)

/1 gNeoDat abase- >r enoveObj ect (j oke) ;

}

Theski | | functionfor jokerstellsajoke. Thejokeit tellsischosen at random fromitsvast repertoire, which
it keeps track of using the part list of the joker object. The function begins by determining how many jokes
areinthe joker's part list. If you look at the implementation of get JokeCount , it simply calls
CNeoPartMgr'sget Li st Count function, which returns the number of entriesin the part list. If it has any
jokesto tell, it selects one by passing a random number between one and the number of jokes it knowsto
get Joke, which locates the joke object in the database and returns a pointer to it. After the jokeisdelivered
we remove our referenceto it.

voi d CJloker::skill(void) const

{
| ong count = get JokeCount () ;
Cloke *j oke;
if (count) {
/1 Randomy pick a joke
j oke = getJoke((rand() &x7FFFFFFF) % count);
NeoAssert (j oke);
neoPrintf("Tells jokes : ");
j oke->printJoke();
/1 Don't forget to renove our reference to the joke.
j oke->unrefer();
}
el se
/1 This guy should probably retire.
neoPrintf("Has no jokes to tell." NeoEQL);
}

Now let’stake alook at what'sinvolved in retrieving ajoke from ajoker’s part list. The joker'sget Joke
function uses another powerful construct found in NeoAccess called an iterator. NeoA ccess actually includes
three iterator classes. The base class, CNeolterator, provides the base capabilities for iterating over
NeoAccess btreesin memory. A CNeoPartListlterator is used to traverse the joker’ s repertoire of jokes. We
use the base part class'sget | t er at or function to obtain such an iterator.

NeoAccess Technical Overview 55

56

Tutorial

CNeoPartL istlterator |
CNeolterator
CNeol ndex|terator |

NeoA ccess Iterator Classes

A newly initialized iterator is positioned by its constructor to just before the first object in the list (or
immediately after the last object if the direction of the iterator is backwards). Thel eap function takes a
signed value which indicates how many objects to move forward or backward in the list. After leaping to the
proper position in thelist, get Joke usestheiterator’'scur r ent Obj ect function to obtain a pointer the
object which the iterator now refersto. Be sureto note that cur r ent Obj ect does not add areferenceto
the object, so one needs to be added before a pointer to the object can be returned to the caller of get Joke.

Cloke *CJoker::getJoke(const |ong aOffset) const

Cloke * j oke;
CNeoPartListlterator *iterator = getlterator();

/1 Select the aOfset-th joke known to this Cloker.
iterator->leap(aCfset);
joke = (CJoke *)iterator->currentObject();

/1 Iterators don't add references to objects. So we add one oursel ves.
if (joke)

j oke->referTo();
delete iterator;

return joke;

}

CJoke

Perhaps we've put the cart before the horse. Having looked at the powers of ajoker, let's now go back and
look at what ajokeredly is. Its abbreviated definition is as follows:

NeoAccess Technical Overview

Tutorial

9
const Neol DkJokel D = 28;
cl ass Cloke : public CNeoPersistNative
{
public:
Cloke(const char *aText = “*);
static CNeoPersist * New(void);
virtual Neol D get Cl assl D(voi d) const;
virtual |ong get Fil eLengt h(const CNeoFornmat *aFornmat) const;
/** 1/ O Menmber Functions **/
vi rtual Bool ean conmi t (CNeoCont ai ner Stream *aStr eam
const Bool ean aConpl etely,
const Bool ean aConpress, const Bool ean aDeeply);
virtual void readObj ect (CNeoStream *aStream const NeoTag aTag);
virtual void witeQbject (CNeoStream *aStream const NeoTag aTag);
/** Persistence Menmber Functions **/
virtual void add(void);
vi rtual Bool ean get Val ue(const NeoTag aTag, const NeoTag aType,
voi d *aVal ue);
virtual void remove(voi d);
vi rtual Bool ean revert(void);
vi rtual Bool ean set Val ue(const NeoTag aTag, const NeoTag aType,
const void *aVal ue);
virtual void updat e(CNeoPer si st *a(bj ect) ;
/** Joke Managenent Menber Functions **/
voi d get Joke(char *aText) {aText = (char*)fJoke.getBl ob();}
| ong get JokeLengt h(voi d) const {return fJoke.getLength();}
voi d printJoke(void) const;
voi d set Joke(const char *aText) {fJoke = aText;}
prot ect ed:
ENeoStri ng f Joke;

b

Some persistent classes have string data members. These string values are preserved and restored using a
stream’sr eadSt ri ngandw i t eSt ri ng member functions. The CNeoString class can be used to
manage a“ native” string. In most environments, a native string is simply a C string, but on the Macintosh it
isaPascal string. (Thefirst byte of aPascal string isthe length, followed the string itself. Note: Pascal strings
are not necessarily null-terminated.)

The problem with strings and CNeoStrings is that the amount of space these data members occupy, both in
memory and in the database, is fixed regardless of the string’s current length. Thisis an inefficient use of
space and limits the maximum length that these strings can be. The common solution to this dilemmaisto
useachar * datamember which refersto a non-contiguous block of memory to contain the string. The
logistics associated with managing this discontiguous string value can be problematic.

NeoA ccess includes an ENeoString class which is used to manage a persistent variable-length string value
much likeachar * data member would in a non-persistent environment. The string managed by
ENeoString objects occupy a variable amount of spacein the file and in memory depending on the string’s
length. ENeoString is a subclass of ENeoBlob, which is the NeoA ccess class that manages non-object
persistent data.

CJoke has only one data member specific to thisclass, f Joke, which isan ENeoString. Clokeis a concrete
persistent class. Assuch, it isaderivative of CNeoPersistNative, and overrides the New, get Cl ass| Dand
get Fi | eLengt h member functions to create the proper type of objects and return the persistence
particulars for the class, respectively. Having seen the implementations of these member functionsin the
classes we' ve seen earlier, the CJoke implementations should come as no surprise.

NeoAccess Technical Overview 57

Tutorial

58

CNeoPer si st *CJoke: : New voi d)

return NeoNew Cloke();
}

Neol D Cloke: : get d assl D(voi d) const

return kJokel D;
}

I ong Cloke::getFil eLength(const CNeoFormat *aFornat) const

return Neol nherited::getFileLength(aFormat) + fJoke.getFil eLength(aFormat);
}

Unfortunately, C++ handles delegation less elegantly than it does inheritance. That is, a data member can
override afunction of the class that containsit. The data member’s member function needs to be called
explicitly. As such, CJoke overridesthe conmi t function so that f Joke’scommi t function gets called.
Theadd, renove,revert,updat e,andveri f y member functions are overridden for the same reason.

NeoAccess Technical Overview

Tutorial

Bool ean CJoke: : commit (CNeoCont ai ner St ream *aStream const Bool ean aConpl etely,
const Bool ean aConpress, const Bool ean aDeeply)

Bool ean noved = fJoke. commit (aStream aConpletely, aConpress);
moved | = Neol nherited::commit(aStream aConpletely, aConpress, aDeeply);

return noved;

}
voi d CJloke: : add(voi d)

Neol nherited: : add();
f Joke. add() ;

}

voi d CJloke: : renove(voi d)

f Joke. renmove();
Neol nherited::remove();

}

Bool ean CJoke: :revert (void)

return (Bool ean)(fJoke.revert() && Neolnherited::revert());

}

voi d CJoke: : updat e(CNeoPer si st *aObj ect)
Neol nheri t ed: : updat e(abj ect) ;

f Joke. updat e(& (Cloke *)alhj ect)->f Joke);
}

const void *Cloke::verify(const void *aVal ue) const
f Joke. veri fy(aVal ue);

return Neol nherited::verify(aVal ue);

}

Theget Val ue andset Val ue member functions are overridden to provide symbolic accessto thef Joke

data member. Their implementations are as expected:

NeoAccess Technical Overview

59

Tutorial

Bool ean Cloke: : get Val ue(const NeoTag aTag, const NeoTag aType, void *aVal ue)

Bool ean resul t = TRUE;
ENeoBl ob * bl ob;

if (aTag == pJoke) {
if (aType == kNeoBl obType)
*(ENeoBl ob **)aVal ue = &f Joke;
el se {
bl ob = &f Joke;
Convert Type(&l ob, kNeoBl obType, aVal ue, aType);

}
el se
result = Neol nherited::getValue(aTag, aType, aVal ue);

return result;

}

Bool ean CJoke: : set Val ue(const NeoTag aTag, const NeoTag aType, const void *aVal ue)

Bool ean resul t = TRUE;
ENeoBl ob * bl ob;

if (aTag == pJoke) {
if (aType == kNeoBl obType)
f Joke. updat e(*(ENeoBl ob **) aVal ue);
el se {
bl ob = &f Joke;
Convert Type(aVal ue, aType, &bl ob, kNeoBl obType);

}

el se
result = Neol nherited::setValue(aTag, aType, aVal ue);

return result;

}

Aswe saw in the implementation of CPerson, ther eadhj ect andwr i t eCbj ect member functions of
CJoke begin by calling Neol nher i t ed, then read/write its single data member, the text of the joke.

voi d CJloke: :readnj ect (CNeoStream *aStream const NeoTag aTag)
CNeoDebugl O checker(aStream FALSE, this);

Neol nherited::readObj ect (aStream aTag);
f Joke. readQbj ect (aSt ream pJoke);

}
voi d Cloke: :witeCbject(CNeoStream *aStream const NeoTag aTag)
CNeoDebugl O checker(aStream TRUE, this);

Neol nherited::witeQhject(aStream aTag);
fJoke. witeObject(aStream pJoke);

}

All other member functions of the CJoke class are everything you would expect them to be.

NeoAccess Technical Overview

Tutorial

CClown

Clowns are every bit as entertaining as jokers. Their unique skill isthrowing pies. The classis defined

something like this:

const Neol D kCl ownl D

= 27;

class CC own : public CPerson

{
public:

static CNeoPersist *
virtual NeolD
virtual long

virtual void
virtual void
virtual void

CPie *

CPie *

| ong

| ong

virtual Bool ean

voi d
virtual Bool ean

virtual void
voi d

protect ed:
| ong

b

/** Instance Menber Functions **/

Cd own(const CNeoString &Name = "",
const CNeoString &aFatherNane = "",
const | ong aShoeSi ze = 15);

New(voi d) ;
get C assl D(voi d) const;
get Fi | eLengt h(const CNeoFornat *aFornmat) const;

/** 1/ O Menber Functions **/

readObj ect (CNeoStream *aStream const NeoTag aTag);
witeObject (CNeoStream *aStream const NeoTag aTag);
updat e(CNeoPer si st *aOhj ect) ;

/** C own Member Functions **/

bakePi e(const char *aFilling = "Custard");

get Pi e(const | ong al ndex);

get Pi eCount (voi d) const {return getListCount();}

get ShoeSi ze(voi d) const {return fShoeSize;}

get Val ue(const NeoTag aTag, const NeoTag aType,
voi d *aVal ue);

set ShoeSi ze(const | ong aShoeSi ze)
{f ShoeSi ze = aShoeSi ze; }

set Val ue(const NeoTag aTag, const NeoTag aType,
const void *aVal ue);

skill (void);

t hrowPi e(CPi e *aPie);

f ShoeSi ze;

The constructor passesits arguments on to its parent, CPerson. Clowns have adefault 1Q of 120. (Clownsare

good cheaters!)

Cd own: : CA own(const CNeoString &Nanme, const CNeoString &aFat her Nane,

const | ong aShoeSi ze)

CPer son(aNane, aFat her Nane, 120)

f ShoeSi ze = aShoeSi ze;
set Ohj Cl assl| D(kPi el D) ;
}

Once again, the New, get Cl assl Dand get Fi | eLengt h member functions create the proper type of
objects and return the persistence particulars for the class, respectively. The implementations of these

functions, shown below, are no surprise.

NeoAccess Technical Overview

61

62

Tutorial

CNeoPer si st *CCl own: : New(voi d)

return NeoNew CC own();
}

Neol D CC own: : get O assl D(voi d) const

return kC ownl D,

}
I ong CC own:: getFil eLengt h(const CNeoFormat *aFornmat) const

return Neol nherited::getFilelLength(aFormat) + sizeof (fShoeSize);

}

Theski I | function causes a pie to be thrown.

voi d Cd own: :skill (void) const

printf(“Throws % pies\n”, fPietype);

And they said that you couldn’t teach an old clown new tricks. Theski | | function of clowns picksapie at
random form the clown’ s arsenal and “throws” it. Theget Pi e function usesapart list iterator to locate the
pieinthelist. A pie can obviously only bethrown once. So throwing it involvesremoving it from the clown’s
pie part list and from the database.

NeoAccess Technical Overview

Tutorial

voi d CO own: :skill (void)

{
| ong count = get Pi eCount () ;
CPie * pi €e;
if (count) {
/1 Randomy pick a pie
pi e = getPi e((rand() &x7FFFFFFF) % count);
NeoAssert (pie);
neoPrintf("Throws pies: ");
t hr owPi e(pi e);
/1 Don't forget to renmove our reference to the pie.
pi e->unrefer();
}
el se
/1 This guy should probably retire.
neoPrintf("Has no pies to throw. " NeoEQL);
}
CPi e *CCl own: : get Pi e(const | ong al ndex)
{
CPie * pi e;
CNeoPartListlterator *iterator = getlterator();

i terator->l eap(al ndex);
pie = (CPie *)iterator->currentObject();

/1 lterators don't add references to objects. So we add one oursel ves.
if (pie)

pi e->referTo();
delete iterator;

return pie;

}

void CO own: :throwPi e(CPie *aPie)

{
char Fi lling[kMaxFillingNane];
char str[256];

/1 Renove the pie fromthis clown's part |ist
del et eFronli st (aPi e);

/1 Now renove it fromthe database conpletely.
gNeoDat abase- >r enoveQbj ect (aPi e) ;

/1 Throw it!

aPie->getFilling(Filling);

sprintf(str, "Here's a % pie in your face!" NeoEQ., Filling);
neoPrintf(str);

CPie

The definition and implementation of CPieis every bit as straightforward as one would expect of a concrete
persistent class. The classis defined as follows:

NeoAccess Technical Overview 63

Tutorial

class CPie : public CNeoPersistNative

{
public:
/** I nstance Menber Functions **/
CPi e(const char *aFilling = "Custard");

static CNeoPersist * New(void);
virtual Neol D get C assl D(voi d) const;
virtual |ong get Fi | eLengt h(const CNeoFormat *aFormat) const;

/** Access Menmber Functions **/

vi rtual Bool ean get Val ue(const NeoTag aTag, const NeoTag aType,
voi d *aVal ue);
vi rtual Bool ean set Val ue(const NeoTag aTag, const NeoTag aType,

const void *aVal ue);

/** |/ O Menber Functions **/

virtual void readObj ect (CNeoStream *aStream const NeoTag aTag);
virtual void writeQbject (CNeoStream *aStream const NeoTag aTag);
virtual void updat e(CNeoPer si st *aObj ect) ;
/** Pie Menber Functions **/
voi d getFilling(char *aText) const
{strncpy(aText, fFilling, kMaxFillingNane);}
voi d setFilling(const char *aText)

{strncpy(fFilling, aText, kMaxFillingNanme);}

protected:
char fFilling[kMaxFillingNane];

}s

CPieisaderivative of CNeoPersistNative, and overridesthe New, get Cl assl Dand get Fi | eLengt h
member functions to create the proper type of objects and return the persistence particulars for the class,
respectively. The implementations of these member functions are as follows.

NeoAccess Technical Overview

Tutorial

9
CNeoPer si st *CPi e: : New(voi d)
return NeoNew CPie();
}
Neol D CPi e: : get Ol assl D(voi d) const
return kPi el D
}
Il ong CPie::getFil eLength(const CNeoFornmat *aFormat) const
NeoUsed(aFor mat) ;
return Neol nherited::getFileLength(aFormat) + kMaxFillingNane;
}
Ther eadhj ect andwr i t eQbj ect member functions of CPie are as one would expect; call
Neol nheri t ed then read/write its data member.
voi d CPie::readObj ect (CNeoStream *aStream const NeoTag aTag)
CNeoDebugl Cchecker (aStream FALSE, this);
Neol nherited: :readObj ect (aStream aTag);
aSt ream >readString(fPi eType, sizeof (fPieType));
}
void CPie::witenject(CNeoStream *aStream const NeoTag aTag)
CNeoDebugl Cchecker (aStream TRUE, this);
Neol nherited:: witeQhject(aStream aTag);
aStream >writeString(fPieType, sizeof(fPieType));
}
The Laughs Application Class
Now that the introductions are complete, let’s look at the implementation of the CLaughsApp class.
NeoAccess Technical Overview 65

66

Tutorial

The Constructor

CLaughsApp: : CLaughsApp(voi d)
CNeoMet adl ass * met a;

/1 Note our file type so that we can be particular in get file dialog.
FFi | eType = kLaughsFil eType;

f Format O
f Format 1
f For mat 2
f Format 3

nil;
nil;
nil;
nil;

/1 Add the application-specific netaclasses to the netacl ass table.
(voi d) NeoNew CNeoMet aCl ass(kNeol DLi st1 D, kNeoNul | O assl D, "CNeol DLi st",
NeoNewCet OnePer si st (CNeol DLi st : : New) ,
NeoNewKeyManager (CNeol DLi st : : KeyManager)) ;
(voi d) NeoNew CNeoMet aCl ass(kPersonl D, kNeoPersistlD, "CPerson",
NeoNewGet OnePer si st (CPer son: : New)) ;
(voi d) NeoNew CNeoMet aCl ass(kJoker | D, kPersonl D, "Cloker",
NeoNewGet OnePer si st (CJoker: : New)) ;
(voi d) NeoNew CNeoMet aCl ass(kJokel D, kNeoPersistlD, "Cloke",
NeoNewGet OnePer si st (CJoke: : New)) ;
(voi d) NeoNew CNeoMet aCl ass(kCl ownl D, kPersonl D, "CC own",
NeoNewGet OnePer si st (CCl own: : New)) ;
(voi d) NeoNew CNeoMet aCl ass(kPi el D, kNeoPersistlD, "CPie",
NeoNewCet OnePer si st (CPi e: : New)) ;

meta = CNeoMet adl ass: : Get Met aCl ass(kPersonl D) ;
nmet a- >addKey(kNeoNat i veSt ri ngl ndexl D, pNeoNane, kNeoNul | d assl D, TRUE);

/1 Let the ganes begin.
printf(“Start Laughing...\n\n");

The constructor of the Laughs application begins with the allocation of metaclass objects for the persistent
classes of the application. The metaclasses for CNeoPersist and CNeol DIndex, two persistent classes used by
virtually all NeoA ccess-based applications, are created by the constructor of the base NeoA ccess application,
CNeoApp.

A metaclassisaclassthat describes other classes. Some object developers would call a metaclass afactory
class. Each metaclass being allocated in Laughs describes important properties of an application-specific
persistent class. Thefirst argument to the metaclass constructor isthe class 1D, followed by the classID of its
parent’s class. The name of the classis aso given, asis apointer to the New function for the class. The
NeoNewGet OnePer si st and NeoNewKeyManager macros need to be used in some runtime
environmentsin order to convert afunction pointer to what is sometimes called auniver sal proc pointer, or
UPP. A UPPisapointer to asubroutinethat residesinaDLL, code fragment or shared library. If NeoAccess
is statically linked into your application or if the environment you' re developing in does not make a
distinction between function pointers and UPPs, then you may not need to use these macros.

It svery important that ametaclass object be allocated for every persistent classin an application. Thiswould
seem to be areasonable request given the straightforward nature of their construction. There’ sno need to keep
pointers to the newly created metaclasses; they are automatically inserted in a metaclass table by their
constructor.

Note that a deep secondary index key is added to the CPerson class. Thisis done by calling its metaclass's
addkey function. Thefirst two argumentsto addKey isthe class D of the collection leaf class and the tag
of the data member to be sorted on —kNeoNat i veSt ri ngl ndex| Dand pNeoNane, respectively.
CPerson’s get Val ue function is called with this tag to obtain the sort key value.

NeoAccess Technical Overview

Tutorial

9

If athird argument isgiven to addKey, it must either be kNeoNul | G assl Dor theclass D of some base
class. Thethird argument of thiscall iskNeoNul | O assl D. Thisisan example of aconsolidated index. A
consolidated index is one which contains objects having a common base class but whose leaf class may
differ. All concrete person objects, be they jokers or clowns, are all sorted together in asingle index in
ascending order by name. See the discussion of “Consolidated Indices’ in the Preliminaries section and the
CNeoMetaClass s Adding to the Metaclass Table” discussion for more information on consolidated indices.

The end result of this metaclass configuration isthat, at least initially, every joker and clown object added in
the database will be indexed primarily by 1D (which is the default), while the secondary consolidated index
will sort all CPerson subclasses in the same index by name. Aswe will see later in thistutorial, it's possible
to dynamically change the indexing of objects in the database at runtime.

Creating a Document

Laughs cr eat eDocunent functionis called to create a new document. NeoAccess' s environment-
specific support in other frameworks may include a different member function which performs afunction
very similar tothecr eat eDocunent function found in the PowerPlant implementation. Most often thisis
because the application isjust starting up or because the user has selected the New... menu item. Y our
application should include acr eat eDocumnent (or compliment) function very much like this one. (The
OnCr eat e function of MFC-based application classes serves a similar purpose.)

The function begins by setting up a NEOTRYTOblock to capture and recover from any failures which might
occur asthe document isallocated or initialized. The NEOCL EANUP handler for thisNEOTRYTODbl ock cleans
up before propagating the failure to the next handler on thefailure stack. The default handler usually displays
adialog box indicating that the command could not be compl eted because of an error.

The arguments passed to the document’ s constructor indicate whether the document supports printing,
whether the database being opened is a new database and whether it is aremote database. The last argument
isreserved for NeoShare support and should be FAL SE for our purposes.

Note that the NeoA ccess database object is alocated by the constructor of CNeoDocNative, not by any
application-specific code.

Another interesting thing to note is that the construction of a database object is not the same as creating an
operating system file. In order to clarify this distinction, let’s consider for a moment the standard user
experience when creating a new word processing document... The user begins by launching the application,
opening anew document window and starting to type. It'sonly after enough of the document has been typed
and the user worries about losing it to asystem crash that the Save As... menuitemischosen. It’ sat this point
that afile on disk is created and the persistent objects that have been added to the database are committed.
NeoA ccess supports this user experience by allowing devel opers to add, remove and search for objectsin a
database object which is not yet open or even specified on the disk.

The only thing left toisto call the document’s newDat abase function to initialize the newly created
document and database.

NeoAccess Technical Overview 67

68

Tutorial

CNeoDoc *CLaughsApp: : cr eat eDocunent (voi d)
CLaughsDoc * docunent = nil;
NEOTRYTO {
const Bool ean printable = FALSE;
const Bool ean newFil e = TRUE;
const Bool ean renote = FALSE;
/1 Create your docunent.
/1
/1 The argunents indicate whether the docunent is...
/1 printable (FALSE),
/1 anewfile (TRUE),
/1 remote (FALSE).
docunent = new CLaughsDoc(printable, newFile, renote);
NeoFai | Ni | (docunent);
docunent - >Set Super Conmander (t hi s);
/1 Call the docunment’s newDat abase function.
docunent - >newbDat abase() ;
}
NEOCLEANUP {
/1 This exception handler gets executed if a failure occurred
/1 anywhere within the scope of the above NEOTRY bl ock. Since
// this indicates that a new doc could not be created, we
/'l check if an object had been allocated and if it has, delete
/1 it. The exception will propagate up to the next exception
/1 handl er, which displays an error alert.
i f (docunent &&
I docunent - >get Dat abase() - >i sOpen()) {
del et e docunent;
docunent = nil;
}
}
NECENDTRYTO,
return docunent;
}

Opening an Existing Database

CNeoLaughsApp openDocunent functionis called to open an existing database. Aswe discussed in the
discussion of CNeoL aughsApp'scr eat eDocunent function, NeoAccess' s environment-specific support
in other frameworks may include a different member function which performs afunction very similar to the
openDocunent function found in the PowerPlant implementation.Y our application should include an
openDocunent (or compliment) function very much like this one. (The OnOpen function of MFC-based
application classes serves asimilar purpose.)

The function begins by setting up a NEOTRYTOblock to capture and recover from any failures which might
occur asthe document isallocated or initialized. The NEOCL EANUP handler for thisNEOTRYTOblock cleans
up before propagating the failure to the next handler on the failure stack. As was the case earlier, the default
handler usually displaysadialog box indicating that the command could not be compl eted because of an error.

The arguments passed to the document’ s constructor indicate whether the document supports printing,
whether the database being opened is a new database and whether it is aremote database. The last argument
isreserved for NeoShare support and should be FAL SE for our purposes. Note that the NeoA ccess database
object is allocated by the constructor of CNeoDocNative, not by any application-specific code.

NeoAccess Technical Overview

Tutorial

9

Once again, note the difference between the construction of a database object and the opening an operating
system file. It isonly after the document object is created that the database is opened using the document’s
openFi | e function.

voi d CLaughsApp: : OpenDocunent (FSSpec *aSpec)

Bool ean renot e;
CLaughsDoc * docunent =nil;

VOLATI LE(docurent) ;

NEOTRYTO {
const Bool ean printable = TRUE;
const Bool ean newFil e = FALSE;

/1 Qur parent will check to see if this is a document we have
/1 already opened. If we find the file already open by the app,
/1 then fDocunent will refer toit. If the file is opened but
/1 not by this app, then the parent will signal a failure.
Neol nheri t ed: : OpenDocunent (aSpec) ;
i f (fDocunent)

return;

renote = FALSE;

/1 Create your docunent.

docunent = new CLaughsDoc(printable, newFile, renote);
NeoFai | Ni | (docunent);

docunent - >Set Super Conmander (this); // PowerPl ant | ogistics

/1 Call the docunent's openFile function. The docunent will open
/1 a wi ndow, open the file specified in the file specification
/1 record, and display it in its w ndow.

docunent - >openFi | e(aSpec) ;

}
NEOCLEANUP {
i f (docunent &&
I docunent - >get Dat abase() - >i sOpen())
del ete docunent;

}
NECENDTRYTO,
}

The Laughs Document Class

In application frameworksthat support them, it isthe charter of the document class to consolidate the various
information sources that the document’ s clients need to operate properly. In practice, thisis arather broad
charter. Most documents have only a single database to work with. But the document classes of many new
Macintosh applications also manage Publish & Subscribe editions as well. Microsoft’s OLE 2 (Object
Linking and Embedding) and Apple’'s OpenDoc push the evolution of document classes further still.

Some frameworks don’t include a document class. Regardless of the support for documents provided by the
application framework, NeoA ccess includes a document class to manage most of the issues associated with
opening, closing and otherwise manipulating a NeoA ccess database.

It sinteresting to note that applications built using NeoA ccess rely much more heavily on the services of the
database class, CNeoDatabase, than do applications which simply “inhale” the entire contents of afileasit

isopened and “exhal€” it back out in response to a Save command. NeoA ccess applications bring objectsinto
memory on demand and purge them when memory reserves are low. A NeoAccess databaseis kept open for
as long as objects from that database are being accessed. And updating a NeoA ccess database doesn’t

NeoAccess Technical Overview 69

Tutorial

necessarily involve rewriting the entire database; only those objects that have changed in memory need to be
written.

const OSType kLaughsFil eType= ' Ne6d';

cl ass CLaughsDoc : public CNeoDocRoot ({

public:
CLaughsDoc(const Bool ean aPri ntabl e,
const Bool ean aNewFil e, const Bool ean aRenvote);
virtual void bui | dW ndow(voi d) ;
virtual void newDat abase(voi d) ;
virtual void openFi | e(FSSpec *aSpec);
voi d creat eObj ects(void);
voi d printQut(void);
b

The constant kLaughsFi | eType isused, in combination with the application’ s signature, by the
Macintosh Finder in choosing the appropriate icon for the document file. These values are ignored in most
other environments.

The constructor and bui | dW ndow member functions of the Laughs document class are trivial. The
constructor simply calls the parent’ s constructor which initializes the document and database object. Most
applicationswill include amore substantial bui | dW ndowfunction which creates and initializes awindow
object in which to present the contents of the document. Laughsis such asimple application that it doesn’t
explicitly create awindow. Instead, atext window is created automatically thefirst timepri nt f iscalled.

Therea meat of the Laughs document classisimplemented in itsnewDat abase, openFi | e,
creat eCbj ect s and pri nt Qut member functions. Let’stake alook at those now.

Creating a New Database

Earlier in thistutorial we saw that in PowerPlant the document’s newDat abase function is called by the
application’scr eat eDocunent function immediately after creating the document. The parent class's
newDat abase function is given an opportunity to do itsthing before the file is actually opened. Then it
specifies a default location for the database on disk. The way in which a database is specified is often
environment-specific. Each framework and operating system provides different interfaces for specifying the
file systemlocation. The PowerPlant database class, CNeoDatabasePP, includesafunction, set Fi | eSpec,
which takes a Macintosh file spec. The name of the Laughs database fileisinitially “Laughter”, though the
user can change it when the standard file dialog box is presented. A volume reference number and directory
ID of zero refersto the directory containing the Laughs application. Again, other environments might handle
the specification of afilelocation by different means.

Having opened the file with the proper permissions, thecr eat eCbj ect s function is called to add objects
to the database.

NeoAccess Technical Overview

Tutorial

voi d CLaughsDoc: : newDat abase(voi d)

{
CNeoDat abase * dat abase = get Dat abase();
NeoFi | eSpec spec;

f NewDat abase = TRUE;
f OpenMode = NeoReadW it ePerm
Neol nheri t ed: : newbDat abase() ;

/1 Set the default nane which appears in the get file dialog.
spec. vRef Num = 0;

spec. parl D = 0;

NeoSt ri ngCopy("\ pLaughter", spec.nane);

dat abase- >set Fi | eSpec(spec);

/1 Stuff the database with objects.
createj ects();

/1 Commit the changes that we nmade to the database.
DoSave();

/1 That's all folks!
printf("\nDone!\n\n");

NeoA ccess uses global variables sparingly. However the global gNeoDat abase must awaysbe set to refer
to “the current database”. The document setsthisvalue in its constructor. An application which hasonly one
database open at atime can always be assured of this variable being set properly. (While Laughsis, in fact,
this simple, most real applications are not.) In frameworks which use document classes, the NeoAccess
document class often sets this value when a document is activated. Devel opers should make surethat it is set
properly in their applications.

Opening an Existing Database

Earlier in this tutorial we saw that when devel oping using PowerPlant the document’sopenFi | e function
is called by the application’sopenDocunent function immediately after creating the document object.
After permissions are set the parent class sopenFi | e functionisgiven an opportunity to doitsthing before
thefileisactually opened. Thisfunction is passed the file specification aSpec. Having opened the file with
the proper permissions, the pri nt Qut function iscalled to display objects in the database.

voi d CLaughsDoc: : openFi | e(FSSpec *aSpec)
CNeoDat abase * dat abase = get Dat abase();
f OpenMbde = NeoReadPer m
Neol nheri t ed: : openFi | e(aSpec);

/1 Find each of the objects in the database in turn.
printQut();

/1 That's all folks!
printf("\nDone!\n\n");

NeoAccess Technical Overview 71

Tutorial

Adding Objectsto the Database

OK, let’s get some work done. The newbDat abase function of the Laughs document class creates a new
database object and then popul ates the database by calling the document’scr eat eCbj ect s function. The

creat eCbj ect s implementationislong, solet’slook at it one piece at atime. We begin by telling the user
what we' re about to do...

/] Tell themwhat we're about to do.
dat abase- >get Nane(string);
if (Istring[0])

string = "Untitled";

sprintf(str,"Storing 4 Jokers and 3 Clowns in \"%\"." NeoECL, (char *)string);
neoPrintf(str);

Adding an abject to the database is pretty straightforward. Simply create the joke in memory, then call the
database’saddObj ect function. We add four jokesin arow...

/1 Each joke is created and added to the database.
/1 Note: An object IDis assigned automatically by addObject.

/1 Know any good jokes? How ' bout this one...
jokel = NeoNew CJloke("The worl d’s shortest poem Flees. Adam had'em");
dat abase- >addObj ect (j okel);

/1 Is this a joke???
j oke2 = NeoNew Cloke("My dog’'s got no nose?");
dat abase- >addObj ect (j oke2);

/1 OK two nore...

j oke3 = NeoNew CJloke("Cogito ergo spud - | think therefore | yant);
dat abase- >addObj ect (j oke3);

j oke4 = NeoNew CJoke("And so | said to the guy...");

dat abase- >addObj ect (j oke4) ;

Having defined the overall schtick, wein turn create three joker objects, teach each of them a repertoire of
jokes and add them to the database. Teaching ajoker ajokeiseasy, just call | ear nJoke. Aswe complete
our work with a particular joke we're careful to delete our reference to the joker by using it’sunr ef er
function. We do the same thing with the joke objects once all the jokers have been educated.

NeoA ccess persistent objects are created just as all C++ objects are, by using the new operator. Each joker

object isinitialized with its name and its father’ s name. Having done that, the object is added to the database
using the database'saddCbj ect function. Note that adding joker objects, which have multiple indices and
part lists, isjust as easy as adding the more basic joke and pie objects. What could be easier?

72 NeoAccess Technical Overview

Tutorial

/1 Create a joker object.
j oker = NeoNew CJoker (" Adant');

/1 Teach it a couple of jokes.
j oker - >l ear nJoke(j okel);
j oker - >l ear nJoke(j oke2);

/1 Add it to the database.

dat abase- >addObj ect (j oker);

/1 Don't need this guy any nore. Renpbve our reference to it.
j oker->unrefer();

joker = nil;

/'l Anot her joker

j oker = NeoNew CJoker ("John", "Adan');
j oker - >l ear nJoke(j oke3);

j oker - >l ear nJoke(j oke4);

dat abase- >addObj ect (j oker);

j oker->unrefer();

joker = nil;

/1 This one steals others' jokes

j oker = NeoNew CJoker (" Steve", "John");
j oker - >l ear nJoke(j okel);

j oker - >l earnJoke(j oke2);

j oker - >l ear nJoke(j oke3);

j oker - >l ear nJoke(j oke4);

dat abase- >addObj ect (j oker);

j oker->unrefer();

j oker = nil;

/1 Create another joker.
j oker = NeoNew Cloker ("Harry", "Adan!);

/1 Add it to the database.
dat abase- >addObj ect (j oker);

/1 This guy steals jokes.
j oker - >l ear nJoke(j oke2);

/1 Remove our reference to the joker and the jokes.
j oker->unrefer();

joker = nil;
j okel->unrefer();
jokel = nil;
j oke2->unrefer();
joke2 = nil;
j oke3->unrefer();
joke3 = nil;
j oked->unrefer();
joked = nil;

Now we're going to add afew clownsto the database and arm them with pies. The processis pretty much the
same as with jokers. A clown’sbakePi e function creates a CPie object, adds it to the database and then
returns areference to the caller. In this particular use of bakePi e we don’t actually need the pie reference
soweremoveit using unr ef er . We need to do thisto all references to persistent objects so that the

NeoA ccess garbage collector know that we're not referring to these objects any more.

NeoAccess Technical Overview 73

Tutorial

74

/1 Create a clown.
cl own = NeoNew CC own("Fred", "John");

/1 Add it to the database.
dat abase- >addObj ect (¢l own) ;

/1 Build up its arsenal.

pi e = cl own- >bakePi e("Jel | 0");

pi e->unrefer();

pi e = cl own- >bakePi e(" Marshnel | ow") ;
pi e->unrefer();

pi e = cl own- >bakePi e(" Custard");

pi e->unrefer();

pi e = cl own->bakePi e(" Cool Wi p®');
pi e->unrefer();

pi e = cl own- >bakePi e(" Yogurt");

pi e->unrefer();

/1l Renmenber to renpve our reference when we're done.
cl own->unrefer();
clown = nil;

// Create another clown.
cl owmn = NeoNew CCl own(" Donal d", "Steve");
dat abase- >addObj ect (cl own) ;

/1 Six pies all the sane.

for (i =1;, i <=6; i++) {
pi e = cl own- >bakePi e(" Lenon- neri ngue") ;
pi e->unrefer();

}

/'l Renove our reference

cl own->unrefer();

clown = nil;

/1 And anot her cl own.
cl own = NeoNew CC own("Eve");
dat abase- >addObj ect (cl own) ;

/1 Four pies all the samne.

for (i =1; i <= 4; i++) {
pi e = cl own- >bakePi e("Banana creant');
pi e->unrefer();

/! Renobve our reference
cl own->unrefer();
clown = nil;

NeoA ccess makes a distinction between changing the state of a database in memory and updating the
database on disk to reflect those changes. TheaddQhj ect function marks each object dirty so that its state
is saved to disk when changes are committed. These changes are committed by the caller of

creat eCbj ect s by using the database'sconmi t function.

Notice how simple an application built using NeoAccess can be. There are absolutely no database
administration tasks to worry about. Application code doesn’t need to keep track of how objects areindexed,
which ones are dirty, or where in the database an object is actually located. NeoA ccess takes care of al the
details so that devel opers can focus on the fun stuff.

NeoAccess Technical Overview

Tutorial

L ocating Objectsin a Database

When the Laughs database is initially created, all the CPerson, CJoker, and CClown objects are indexed on
the f Nane field. However, al objects of a particular class are sorted separately from all objects of other
classes (e.g., CJokers are sorted separately from CClowns). Unfortunately, this does not allow usto iterate
through all objects having a base class of CPerson in the a phabetical order. It's also possible in NeoAccess
to create a consolidated index in which CPersons, CJokers and CClowns are sorted together al phabetically by
f Nanme. Moreover, such an index (aswell as any other NeoAccess index) can be created dynamically at run
time.

After printing a message indicating the name of the database and how many objectsit contains, pr i nt Qut
changes the indexing of the database then uses the new indexing to iterate over all CPerson objectsin the
database by name. The evolutionary change in the way in which objects in this database are organized
illustrates one aspect of NeoAccess' s schema evolution support.

NeoAccess Technical Overview 75

Tutorial

voi d CLaughsDoc: : pri nt Qut (voi d)

{
CPerson * person;
CPerson * f at her;
CNeoNat i veSt ri ngSel ect key(pNeoName, "");
CNeoDat abase * dat abase = get Dat abase();
CNeolterator * iterator;
CNeoMet aCl ass * et a;
CNeoString string;
char str[256];

/1 Tell them what we're about to do.
dat abase- >get Nane(string);
sprintf(str, "Restoring %d Jokers and %d Cowns from\"%\"." NeoECL,
dat abase- >get Obj ect Count (kJoker | D, FALSE),
dat abase- >get Obj ect Count (kC ownl D, FALSE), (char *)string);
neoPrintf(str);

meta = CNeoMet ad ass: : Get Met all ass(kPersonl D) ;

/1 Remove the existing non-consolidated indices fromthe netacl ass table.
met a- >r enoveKeyByl D(kNeoNat i veSt ri ngl ndexl D, pNeoNane, TRUE);

/1 Add the new consolidated index to the nmetacl asses table.

met a- >addKey(kNeoNat i veSt ri ngl ndexl D, pNeoNane, kPersonl D, TRUE);

/1 Ask database to update indices to correspond to the metacl asses table.
dat abase- >updat el ndi ces() ;

key. set Mat chAl | (TRUE) ;
/1 W want to iterate through all objects having base class of CPerson
/1 in the al phabetical order.
iterator = database->getlterator(kPersonlD, &key, TRUE);
person = (CPerson *)iterator->current Cbject();
whi | e(person) {
per son- >aut oRef er To() ;
per son->print Name() ;
fat her = person->get Fat her();
if (father) {
neoPrintf("Father's ");
f at her - >pri nt Nanme() ;
}
el se
neoPrintf("This is an orphan" NeoEQL);
person->skill();
neoPrintf (NeoEQL) ;
per son->aut oUnrefer();
person = (CPerson *)iterator->next Qhject();

}

delete iterator;

}

The clarity of Laughs has allowed us study the steps a developer must take in order to build avery smple
application that uses NeoAccess. Thistutorial has been unencumbered by user interface issues and many of
the other logistics which often complicate applications.

NeoAccess Technical Overview

A
accessor function 50
add 58

addKey 28
CNeoMetaClass 36, 66

addObj ect 13,32,44
CNeoDatabase 36, 72, 74

addToli st
CNeoPartMgr 54

application developer 1
application specific

index class 29

object 9
associative lookup 14
asynchronousi/o function 37

B
back-end group 1
base class 9

btree 24
density 25
depth 25
direct 26
indirect 25, 26, 28
root 25
using 25
bui | dW ndow 70

C

Cstring 23

char * 23
char [] 23
class|D 10, 43, 47

cl ose
CNeoDatabase 8

CNeoAndSelect 17
CNeoAppNative 42

CNeoAttribute
setStatic 35

CNeoBlobStringindex 28, 29
CNeoClass 27
CNeoCollection 24
CNeoContainerStream 7, 22

CNeoDatabase 5, 9, 69
addbj ect 36,72, 74
cl ose 8
commt 52,74
createPrototype 35

| ndex

renmoveObj ect 55

revert 52

set Fi |l eSpec 70

Specify 7

updat el ndi ces 36
CNeoDebuglO 39, 49

CNeoDoc
cr eat eDocunent 67, 68
openFil e 69

CNeoDocMFC 7,8
OnCl oseDocunent 8
OnSaveDocunent 7

CNeoDocNative 67, 68
CNeoDocPP 7

DoAESave 7
CNeoDynaObject

getd assI D 35

get Val ue 36

setd assl D 37

set Val ue 36
CNeoFileStream 22
CNeolDIndex 29
CNeolDList 30, 54
CNeolndexIterator 16
CNeolnode 26
CNeolterator 16, 55
CNeoLonglndex 28
CNeolLongSelect 28
CNeoMetaClass

addKey 36, 66

Cet Unusedl D 35
CNeoNativeStringlndex 28, 29
CNeoNode 21, 24, 28
CNeoPartListlterator 16, 55

current j ect 56

| eap 56
CNeoPartMgr 45

addToLi st 54

del et eFronLi st 55

getlterator 55,56

get Li st Count 55

set vj Cl assl D 54
CNeoPersist 9

changing 14

Convert Type 50

deleting from memory 14

destructor 43

Fi ndByl D 44

Fi ndEvery 44

get Cl asslI D 53

NeoAccess Technical Overview

getFil eLength 44

New 53

permanent member 14

referTo 44

removing from database 14

revert 52

set Busy 44

setDirty 44

set| D 44

set Unbusy 44

transitory member 14

unr ef er 44,55

updat e 52

versioning 30
CNeoPersistNative 42, 45
CNeoString 23, 57
CNeoStringlndex 28, 29
code fragment 66

collection
leaf node 25

collection class 24

conmmt 58
CNeoDatabase 52, 74

conpar eCl asses 33
conpar el ndi ces 33,34
concrete class 53
concurrency 44
consolidated index 29
container 5

container stream 22
containment hierarchy 45

Convert Type
CNeoPersist 50

cooperation 44
core leak detection 11

cr eat eDocunent
CNeoDoc 67, 68

creat ePr ot ot ype
CNeoDatabase 35

current Obj ect 17,18
CNeoPartListlterator 56

cursor 3

D
datadictionary 2
datafork 5

database
adding object to 13

77

Index

)
closing 8 get Anot her 26 L
S HLEBASHG S et
gg;fgr::@rllsm s CNeoPersist 53 :eja';oo'e 25
deep search 17 ’ gegzlfl | eLengt h 39, 49, 54, 57, 61, CNeoPartListlterator 56

del et eFronli st
CNeoPartMgr 55

design pattern 2
direct btree 25
DLL 66

DoAESave
CNeoDocPP 7

doUntil 19

doUnti | Obj ect 19

dynamic meta-object protocol 34
dynamic object 10

dyna-object 34

E

embedded string 24
ENeoBlob 57
ENeolLocation 22

ENeoPartMgr 45
addToLi st 54
del et eFronli st 55
getlterator 55,56
get Li st Count 55
ENeoString 24, 57
readoj ect 24
witeObject 24

ENeoSwizzler

oper at or CNeoPer si st Na-

tive * 53
readoj ect 50
revert 52
witeObject 50

environment neutral
CNeoPersist 45

environment specific
CNeoPersist 45
CNeoPersistNative 45

extended binary tree 24

F

factory class 66

Fi ndByl D
CNeoPersist 44

Fi ndByX 11

Fi ndEvery
CNeoPersist 44

findOoj ect 11
format object 33, 44
friction 38
front-end group 1
fruit object 25

G

garbage collection 32

78

CNeoPersist 44
get For mat 33

getlterator 17,18
CNeoPartMgr 56
ENeoPartMgr 55

get Li st Count
CNeoPartMgr 55

get Locati on 22
get Obj ect 21

get Cbj ect Count 19
get Stream 22

Cet Unusedl D
CNeoMetaClass 35

get User For mat 33

get Val ue 28, 50, 59, 66
CNeoDynaObject 36

gNeoDat abase 38,71

i/o completion routine 37
index 26
adding 29
class 26
consolidated 29
owner class 29
inverted 26
leaf class 9
removing 29
type-specific 28
indirect btree 25
inhale/exhde 9, 41
inode 25
inverted index 26
i SA
TObject 45
i sCont ai ner Stream 22
i SRPCSt r eam 22

iterator 3, 16

J

JavaBeans 22

K

keyed iterator 3

KeyManager 26,28
kNeoCanSupport 26
kNeoCl asses 47
kNeoFirstPrototypeClassiD 35
kNeoMaxSt ri ngLengt h 29
kNeoNul | O assl| D 67
kNeoPrototypelD 35

NeoAccess Technical Overview

location 22

M

Macintosh Resource Manager 5
mar kCl assTenporary 32
metaclass 66

N

native string 23
NECCATCH 12
NECCLEANUP 67
NeoNew 5, 11
NeoShare 67

NeoTest Funcl 19, 20
NECTRY 12, 31
NEOTRYTO 31, 67

New 43, 54, 57, 61, 64
CNeoPersist 53

newoperator 5, 11
newDat abase 67, 70
next Cbj ect 17,18

node 25
count 25
entry 25
using 25

@)

object
caching 14
identity 44
reference count 44
sharing 11

OLE 5,22

Ond oseDocunent
CNeoDocMFC 8

OnCreate 67
one-to-many relationship 45
OnQOpen 68

OnSaveDocunent
CNeoDocMFC 7

OpenDoc 5, 22

openFile 70
CNeoDoc 69

order 17

P

part list 16, 45, 54, 62
parts explosion 14
Pascal string 23, 57
permanent object 10
persistence 2
persistent object 8, 10

Index

persistent string 23
portability 45

PowerPlant 6

previ ousChj ect 17,18
primary index 26
prototype 34

Q

gNeoAsyncl O 37,39
gNeoDebug 39, 49
gNeoDebugFreel i st 39
gNeoDebugl O 49
gNeoDebugMenory 11, 40
gNeoDynaObject 35
gNeoDynaChj ect 40
gNeoLaundry 38
gNeoMar kSi ze 38
gNeoThr eads 38, 39, 40
gNeoVer si ons 30, 40

query 3
optimizer 16

R

readLong 48
readNativeString 23

readoj ect 22, 33, 48, 60, 65
ENeoString 24
ENeoSwizzler 50

readString 23,57
record 2

reference counting 15, 44
referential query 14, 16

referTo 11
CNeoPersist 44

relational query 14
renmove 58

renoveObj ect 32
CNeoDatabase 55

renoveTenpOhj ects 32
renoveTer m 18

resource 5

resource fork 5

revert 58
CNeoDatabase 52
CNeoPersist 52
ENeoSwizzler 52

S

SaveAs... menuitem 44, 67
Save menu item 44, 69
schema 2

schema evolution 2, 33, 75
secondary index 26

select key 3

select tag 16

selection criterion 3

seriaization of change 44

set Busy 13
CNeoPersist 44

set d assl D
CNeoDynaObject 37

setDirty 14
CNeoPersist 44

set Fi | eSpace
CNeoDatabase 70

setI D
CNeoPersist 44

set Locati on 22

set vj Cl assI D
CNeoPartMgr 54

set Order 17

setStatic
CNeoAttribute 35

set Unbusy 13
CNeoPersist 44

set Val ue 51, 59
CNeoDynaObject 36

shared access 44

shared library 66

smart pointer 15, 44

Speci fy
CNeoDatabase 7

SQL 3

stream 9, 22

string
C 23
CNeoString 23
embedded 24
native 23
Pascal 23
persistent 23

swizzler 15, 44, 46
synergy 3

T
table 2

tag 11,34
target object 25

thread 37
cooperative 37
preemptive 37

TObject
i SA 45
OWL 45
typed stream 48

U

universal proc pointer 66

unrefer 11,14
CNeoPersist 44, 55

updat e 58
CNeoPersist 52

updat el ndi ces 29, 33,34
CNeoDatabase 36

UPP 66

NeoAccess Technical Overview

V

verify 58

W

Windows
Explorer 26

wrapper routine 9
witeNativeString 23

writeQbject 22, 33, 39,48, 60,65
ENeoString 24
ENeoSwizzler 50

writeShort 48
witeString 23,57

79

	Welcome 1
	Technical Overview 5
	Tutorial 41
	Welcome
	Introduction
	The Development Experience
	Who’s Who

	Design Patterns
	ODBMS and RDMBS Differences
	Data Dictionary
	Tables and Records
	Query
	Cursor

	NeoAccess Synergy
	Naming Conventions
	Typographic Conventions

	Technical Overview
	Introduction
	The Database
	CNeoDatabase
	Creating and Opening the Database
	void CNeoDocPP::CNeoDocPP(const OSType aCreator, c...
	const Boolean aPrintable, const Boolean aNewDataba...
	const Boolean aCreateDatabase)
	{
	LGrowZone * growZone;
	NeoUsed(aPrintable);
	SetSuperCommander(gNeoApp);
	SetSuperModel(gNeoApp);
	fNewDatabase = aNewDatabase;
	mFile = NeoNew CNeoDatabaseNative(aCreator, aType)...
	gNeoDatabase = ((CNeoDatabaseNative *)mFile);
	growZone = LGrowZone::GetGrowZone();
	if (growZone)
	growZone->AddListener(this);
	fOpenMode = NeoReadWritePerm;
	BOOL CNeoDocMFC::OnNewDocument()
	{
	Boolean result = CDocument::OnNewDocument();
	NeoAssert(!fDatabase);
	fDatabase = new CNeoDatabaseNative;
	CNeoDatabase::SetCurrentDatabase(fDatabase);
	SetModifiedFlag(FALSE);
	return result;
	}

	Committing Changes to the Database
	void CNeoDocPP::DoAESave(FSSpec &aSpec, OSType aTy...
	{
	CNeoDatabaseNative * database = getDatabase();
	CNeoDBFocus dbFocus(database);
	NeoUsed(aType);
	// Specify the location of the database in the fil...
	database->Specify(&aSpec);
	mIsSpecified = TRUE;
	// Create the database file.
	database->create();
	// Open the database file.
	database->open(fsRdWrPerm);
	// If this document has a window, update its title...
	if (mWindow)
	mWindow->SetDescriptor(aSpec.name);
	// Write out all objects contained in this databas...
	database->commit(TRUE);
	// Note that document is no longer dirty.
	setDirty(FALSE);
	}
	BOOL CNeoDocMFC::OnSaveDocument(const char *aPathN...
	{
	if (fDatabase) {
	SetPathName(aPathName, fAddToMRU);
	if(!fDatabase->isOpen() || fDatabase->fNewStream) ...
	fDatabase->create();
	fDatabase->open(NeoReadWritePerm);
	}
	fDatabase->commit(TRUE);
	if (!fDatabase->isDirty()) {
	SetModifiedFlag(FALSE);
	return TRUE;
	}
	}
	return FALSE;
	}

	Closing the Database
	When the close function is called, any uncommitted...
	{
	BOOL bAutoDelete = m_bAutoDelete;
	m_bAutoDelete = FALSE; // don't destroy document w...
	CDocument::OnCloseDocument();
	if (fDatabase) {
	if (fDatabase->isOpen())
	fDatabase->close();
	delete fDatabase;
	if (gNeoDatabase == fDatabase)
	gNeoDatabase = nil;
	fDatabase = nil;
	}
	m_bAutoDelete = bAutoDelete;
	// delete the document if necessary
	if (m_bAutoDelete)
	delete this;

	The Object
	Application-Specific Objects
	As noted, persistent objects (CNeoPersist and its ...
	const NeoID kPersonID = 25;
	const NeoTag pNeoName = 0x6e616d65; /* ASCII - ‘na...
	const NeoTag pFather = 0x66617468; /* ASCII - 'fat...
	const NeoTag pAddress = 0x41647273; /* ASCII - 'Ad...
	const NeoTag pIQ = 0x49512020; /* ASCII - 'IQ ' */...
	class CPerson : public Compartment
	{
	public:
	CPerson (const CNeoString &aName = ““,
	const CNeoString &aFatherName = ““,
	const CNeoString &anAddress = ““,
	const unsigned short aIQ = 100);
	NeoID getClassID(void) const {return kPersonID;}
	static CNeoPersist *
	New(void) const {return NeoNew CPerson();}
	Noises getFileLength(const CNeoFormat *aFormat) co...
	void readObject(CNeoStream *aStream, const NeoTag ...
	void writeObject(CNeoStream *aStream, const NeoTag...
	protected:
	CNeoString fName;
	TNeoIDSwizzler fFather;
	CNeoString fAddress;
	unsigned short fIQ;
	};

	Tags
	Creating an Object
	In some cases, the NeoNew macro is used instead. T...

	Sharing an Object
	There is an easy way to remember which NeoAccess m...
	void Masseuse(CNeoDatabase *aDatabase)
	{
	for (long index = 0; index < 100; index++)
	MassageObject(aDatabase, index);
	}
	void MassageObject(CNeoDatabase *aDatabase, const ...
	{
	CNeoAppSpecific * object;
	object = CNeoPersist::FindByID(aDatabase, kAppSpec...
	// Do a bunch of stuff to the object.
	// ...
	// Call unrefer to remove the reference we obtaine...
	object->unrefer();
	}
	void MassageObject2(CNeoDatabase *aDatabase, const...
	{
	CNeoAppSpecific * object = nil;
	NEOTRY {
	object = CNeoPersist::FindByID(aDatabase, kAppSpec...
	// Do a bunch of stuff to the object.
	// ...
	// Remove the reference we obtained from FindByID....
	object->unrefer();
	object = nil;
	}
	NEOCATCH {
	if (object)
	object->unrefer();
	}
	NEOENDTRY;
	}

	Object Concurrency and Referential Integrity
	void ChangeObject(CAppSpecific *aObject)
	{
	// Mark the object busy so that others realize tha...
	aObject->setBusy();
	// Call a routine that changes the state of the ob...
	ThrashObject(aObject);
	// Now that it is once again consistent, mark the ...
	object->setUnbusy();
	}
	void ChangeObject(CAppSpecific *aObject)
	{
	CNeoBusyFocus(aObject);
	// Call a routine that changes the state of the ob...
	ThrashObject(aObject);
	}

	Adding an Object to the Database
	CPerson *CMyDocument::CreateNewPerson(CNeoString a...
	CNeoString aFather, CNeoString anAddress, unsigned...
	{
	CPerson* pPerson = NeoNew CPerson(aName, aFather, ...
	gNeoDatabase->addObject(pPerson);
	return pPerson;
	}

	Changing an Object
	Changes to persistent objects occur only in memory...
	void CAppSpecific::setPermValue(const long aValue)...
	{
	fPerm = aValue;
	setDirty();
	}

	Removing an Object
	Deleting an Object

	Organizing Objects in the Database
	Indexing
	Swizzlers
	TNeoSwizzler<CPerson> person;
	TNeoTracker<CNeoIterator> database->getIterator(kP...
	person = (CPerson *)iterator->currentObject();
	while (person) {
	person->printName();
	person->skill();
	neoPrintf(NeoEOL);
	person = (CPerson *)iterator->nextObject();
	}

	Part Lists

	Searching for Objects in the Database
	Selection Criteria
	Iterators
	Finding Objects Using an Iterator
	void offTheWall(CNeoDatabase *aDatabase)
	{
	CNeoIDSelect lowTerm(1);
	CNeoIDSelect highTerm(100);
	CNeoAndSelect key;
	CNeoIndexIterator * iterator;
	TNeoSwizzler<CBottle> object;
	// Configure the key to match all objects between ...
	lowTerm.setOrder(kNeoHighOrEqual);
	keyhigh.setOrder(kNeoLow);
	key.addTerm(&lowTerm);
	key.addTerm(&highTerm);
	// Get an iterator which matches all CBottle objec...
	// object IDs between 1 and 100.
	iterator = aDatabase->getIterator(kBottleID, &key,...
	// Prime the loop.
	object = (CBottle *)iterator->currentObject();
	while (object) {
	// What should happen if one should fall?
	object->shatter();
	// Another bottle within range?
	object = (CBottle *)iterator->nextObject();
	}
	// Cleanup.
	key.removeTerm(highTerm);
	key.removeTerm(lowTerm);
	delete iterator;
	}

	Adding and Removing Objects Using an Iterator
	void graduation(ENeoPartMgr *aRoster, ENeoPartMgr ...
	{
	CNeoNameSelect key("Bob");
	CNeoPartListIterator * iterator;
	TNeoSwizzler<CStudent> grad;
	// Get an iterator which matches all CStudent obje...
	iterator = aRoster->getIterator(&key, TRUE);
	// Prime the loop.
	grad = (CStudent *)iterator->currentObject();
	while (grad) {
	// Remove the graduate from the class roster.
	// <Pomp and Circumstance>
	iterator->removeCurrent(grad);
	// Brother, can you spare a million?
	aAlumni->addToList(grad);
	// Oh, it's you Bob!
	grad = (CStudent *)iterator->currentObject();
	}
	// Cleanup.
	delete iterator;
	}

	Database Searching
	These search functions of the database class are b...
	CRoom *CAppointment::FindRoom(const NeoID aRoomNo)...
	{
	CNeoIDSelect key(aRoomNo);
	CRoom * room;
	room = (CRoom *)gNeoDatabase->findObject(kRoomID, ...
	return room;
	}

	Apply a Function to a Set of Objects
	void *CountObject(CNeoCollection *aNode, const sho...
	{
	// Count this object.
	(*(long *)aParam)++;
	return nil;
	}
	long CountObjects(CNeoDatabase *aDatabase)
	{
	long count = 0;
	// Count all objects in the database.
	aDatabase->doUntilObject(nil, kNeoPersistID, TRUE,...
	return count;
	}
	class CMessage: public CNeoPersistNative {
	public:
	…
	Boolean isPriority(void);
	…
	protected:
	/** Instance Variables **/
	long fPriority;
	…
	};
	void *DisplayPriorityMsg(CNeoCollection *aNode, co...
	const NeoLockType aLock, void *aParam)
	{
	Boolean done = FALSE;
	TNeoSwizzler<CMessage> msg;
	// Get a pointer to the indicated object.
	msg = (CMessage *)aNode->getObject(aOffset);
	if (msg) {
	// If it is a priority message, then present it to...
	if (msg->isPriority())
	done = DisplayMsg(msg);
	}
	// Stop searching upon user request.
	return (void *)done;
	}
	void DisplayPriorityMsgs(CNeoDatabase *aDatabase)
	{
	// Present priority messages until the user says t...
	aDatabase->doUntilObject(nil, kMessageID, FALSE,
	(NeoTestFunc1)DisplayPriorityMsg, nil);
	}

	Object I/O
	Persistent Strings
	Character Arrays
	Native Strings
	Embedded Strings

	Collection Classes
	Btrees

	An Extended Binary Tree
	A Single Node Extended Binary Tree
	Using Nodes
	Index Classes
	Primary and Secondary Indices

	Sample File System Containment Hierarchy
	A File System’s Primary Index
	A File System’s Complete Set of Indices
	Type-Specific Indices
	meta->addKey(kNeoLongIndexID, pSalary);
	When using type-specific indices, it’s very import...

	String Index Classes
	Consolidated Indices
	Dynamically Adding and Removing Indices
	Creating Domain-Specific Index Classes
	Choosing a String Index
	Object Versioning

	Object State Transition Diagram for Client/Server ...
	Exception Handling
	// Prepare to do something that may cause an excep...
	NEOTRY {
	// Do something that may cause an exception.
	}
	NEOCATCH {
	// Do whatever it takes to clean up after yourself...
	}
	NEOENDTRY;
	// Do whatever it takes to clean up after yourself...
	// Prepare to do something that may cause an excep...
	NEOTRYTO {
	// Do something that may cause an exception.
	}
	NEOCLEANUP {
	// Do whatever it takes to clean up after yourself...
	}
	NEOENDTRYTO;

	Temporary Objects
	Object Caching
	Due to concurrency issues associated with committi...

	Schema Evolution
	Format Objects
	Converting the Format of Objects in a Database
	Newer versions of an application are not required ...

	Changing Object Indexing
	The primary key of a persistent class can not be c...

	DynaObjects
	Defining a Dynamic Class
	NeoID classID;
	CNeoDynaObject * prototype;
	CNeoAttribute * attribute;
	CNeoMetaClass * meta;
	// Create a prototype for a dynamic person class.
	prototype = database->createPrototype("DPerson");
	// Add a couple of attributes to the prototype.
	attribute = NeoNew CNeoLongAttribute(pIQ, 100);
	prototype->addAttribute(attribute);
	attribute->unrefer();
	attribute = NeoNew CNeoULongAttribute(pAge, 38);
	prototype->addAttribute(attribute);
	attribute->unrefer();
	// Sort people by IQ. Is this P.C.?
	classID = prototype->getID();
	meta = CNeoMetaClass::GetMetaClass(classID);
	meta->addKey(kNeoLongIndexID, pIQ);
	database->updateIndices();
	// Add a static attributes to the prototype.
	attribute = NeoNew CNeoLongAttribute(pPopulation, ...
	attribute->setStatic();
	prototype->addAttribute(attribute);
	attribute->unrefer();
	The value of a static attribute is shared by all i...

	Working with Dynamic Objects in a Database
	long IQ;
	CNeoDynaObject * genius;
	// Give birth to a true genius.
	genius = NeoNew CNeoDynaObject(database, classID);...
	// She’s not a genius unless her IQ is greater tha...
	genius->getValue(pIQ, kNeoLongType, &IQ);
	if (IQ < 160)
	genius->setValue(pIQ, kNeoStringType, “180”);
	// Add her to the database.
	database->addObject(genius);
	genius->unrefer();
	If a dyna-object does not contain a key attribute ...

	Adding and Removing Attributes from a Dyna-Object ...
	// As we grow older, our experiences count more th...
	// This will result in the object being removed fr...
	genius->removeAttribute(pIQ);
	// She’s a little sensitive about her age.
	genius->removeAttribute(pAge);
	attribute = NeoNew CNeoStringAttribute(pAge, "30-s...
	genius->addAttribute(attribute);
	attribute->unrefer();

	Changing the Class ID of an Object
	// Change the class ID of a dyna-object to be a pe...
	meta = CNeoMetaClass::FindByName(“DPerson”);
	classID = meta->getID();
	dyna->setClassID(classID);

	Threads and Asynchronous I/O
	Laundry
	Configuring NeoAccess
	kNeoMarkSize
	qNeoAsyncIO
	qNeoByteSwap
	qNeoDebug
	qNeoDebugFreelist
	qNeoDebugIO
	void CNeoMyClass::readObject(CNeoStream *aStream, ...
	{
	CNeoFormat *format = aStream->fInputFormat;
	CNeoDebugIO checker(aStream, FALSE, this);
	NeoInherited::readObject(aStream, aTag);
	NeoAssert(format);
	fTeacherID = aStream->readLong();
	if (format->fNeoFormat <= kNeo2P0FileFormat)
	(void)aStream->readLong(); // Old data member, no ...
	}

	qNeoDebugMemory
	qNeoDynaObject
	qNeoThreads
	qNeoVersions

	Tutorial
	Introduction
	It might be a good idea to bring up the Laughs pro...

	Laughs
	int main(void)
	{
	CLaughsApp * app;
	// PowerPlant asks that the following be done befo...
	InitializeHeap(1);
	InitializeToolbox();
	(void)new LGrowZone(20000);
	// Create an application object, run it, then dele...
	app = NeoNew CLaughsApp();
	app->Run();
	delete app;
	return 0; // Time to go home.
	}
	const OSType kLaughsSig = 'Neo6';
	class CLaughsApp : public CNeoAppNative {
	public:
	/** Instance Member Functions **/
	CLaughsApp(void);
	virtual CNeoDoc * createDocument(void);
	virtual void openDocument(FSSpec *aSpec);
	};
	The Persistent Classes

	Inheritance Tree for Persistent Laughs Classes
	CNeoPersist
	class CNeoPersist
	{
	public:
	/** Instance Member Functions **/
	virtual ~CNeoPersist(void) {}
	virtual NeoID getClassID(void) const;
	static CNeoPersist * New(void);
	virtual long getFileLength(const CNeoFormat *aForm...
	/** I/O Member Functions **/
	virtual void readObject(CNeoStream *aStream, const...
	virtual void writeObject(CNeoStream *aStream, cons...
	/** Searching Member Functions **/
	static void * FindByID(CNeoDatabase *aDatabase,
	const NeoID aClassID, const NeoID aID,
	const Boolean aDeeply, NeoTestFunc1 aFunc,
	void *aParam, const NeoLockType aLock);
	static void * FindEvery(CNeoDatabase *aDatabase,
	const NeoID aClassID, const Boolean aDeeply,
	NeoTestFunc1 aFunc, void *aParam,
	const NeoLockType aLock);
	/** Persistence Member Functions **/
	virtual void setID(NeoID aID);
	void setDirty(const NeoDirty aReason = kNeoChanged...
	/** Schema-Evolution Member Functions **/
	virtual NeoMark convert(CNeoFormat *aOldFormat, CN...
	/** Concurrency Member Functions **/
	void referTo(void);
	NeoRefCnt unrefer(void);
	void setBusy(void);
	void setUnbusy(void);
	#ifdef qNeoDebug
	/** Debugging Member Functions **/
	virtual const void * verify(const void *aValue) co...
	#endif
	};

	CNeoPersistNative
	CNeoPartMgr

	Part Manager with Attached Part List
	CPerson
	class CPerson : public CNeoPartMgr
	{
	public:
	/** Instance Member Functions **/
	CPerson(const CNeoString &aName = "",
	const CNeoString &aFatherName = "",
	const unsigned short aIQ = kDefaultIQ);
	virtual long getFileLength(const CNeoFormat *aForm...
	/** Access Member Functions **/
	CPerson * getFather(void);
	void getFatherName(CNeoString &aName);
	virtual Boolean getValue(const NeoTag aTag, const ...
	void *aValue);
	void printName(void) const;
	void setFatherName(const CNeoString &aName = "");
	virtual Boolean setValue(const NeoTag aTag, const ...
	const void *aValue);
	virtual void skill(void) = 0;
	/** I/O Member Functions **/
	virtual void readObject(CNeoStream *aStream, const...
	virtual void writeObject(CNeoStream *aStream, cons...
	/** Persistence Member Functions **/
	virtual Boolean revert(void);
	virtual void update(CNeoPersist *aObject);
	/** Schema-Evolution Member Functions **/
	virtual NeoMark convert(CNeoFormat *aOldFormat, CN...
	/** Purge Member Functions **/
	virtual Boolean purge(NeoSize *aNeeded) const;
	protected:
	CNeoString fName;
	TNeoIDSwizzler fFather;
	CNeoString fAddress;
	unsigned short fIQ;
	};
	const NeoID kPersonID = 25;
	CPerson::CPerson(const CNeoString &aName, const CN...
	const unsigned short aIQ)
	{
	setName(aName);
	setAddress(kDefaultAddress);
	setIQ(aIQ);
	setFatherName(aFatherName);
	}
	void CPerson::readObject(CNeoStream *aStream, cons...
	{
	CNeoFormat * format = aStream->fInputFormat;
	CNeoDebugIO checker(aStream, FALSE, this);
	NeoAssert(format);
	NeoInherited::readObject(aStream, aTag);
	aStream->readNativeString(fName, sizeof(fName), pN...
	if (format->getUserFormat() == kLaughsFormat2 ||
	format->getUserFormat() == kLaughsFormat4)
	aStream->readNativeString(fAddress, sizeof(fAddres...
	else
	// If fAddress was not persistent in this version ...
	// then we'll use the default value.
	fAddress = kDefaultAddress;
	if (format->getUserFormat() == kLaughsFormat3 ||
	format->getUserFormat() == kLaughsFormat4)
	fIQ = aStream->readShort(pIQ);
	else
	// If fIQ was not persistent in this version of th...
	// then we'll use the default value.
	fIQ = kDefaultIQ;
	fFather.readObject(aStream, pFather);
	}
	void CPerson::writeObject(CNeoStream *aStream, con...
	{
	CNeoFormat * format = aStream->fOutputFormat;
	CNeoDebugIO checker(aStream, TRUE, this);
	NeoAssert(format);
	NeoInherited::writeObject(aStream, aTag);
	aStream->writeNativeString(fName, sizeof(fName), p...
	if (format->getUserFormat() == kLaughsFormat2 ||
	format->getUserFormat() == kLaughsFormat4)
	aStream->writeNativeString(fAddress, sizeof(fAddre...
	if (format->getUserFormat() == kLaughsFormat3 ||
	format->getUserFormat() == kLaughsFormat4)
	aStream->writeShort(fIQ, pIQ);
	fFather.writeObject(aStream, pFather);
	}
	long CPerson::getFileLength(const CNeoFormat *aFor...
	{
	long length = NeoInherited::getFileLength(aFormat)...
	+ sizeof(CNeoString)
	+ fFather.getFileLength(aFormat);
	switch (aFormat->getUserFormat()) {
	case kLaughsFormat1:
	break;
	case kLaughsFormat2:
	length += sizeof(CNeoString);
	break;
	case kLaughsFormat3:
	length += sizeof(unsigned short);
	break;
	case kLaughsFormat4:
	length += sizeof(CNeoString) + sizeof(unsigned sho...
	break;
	default:
	NeoAssert(FALSE); // unknown format!
	}
	return length;
	}
	Boolean CPerson::getValue(const NeoTag aTag, const...
	{
	Boolean result = TRUE;
	switch (aTag) {
	case pNeoName:
	if (aType == kNeoNativeStringType)
	*(CNeoString *)aValue = fName;
	else
	ConvertType(&fName, kNeoNativeStringType, aValue, ...
	break;
	case pAddress:
	if (aType == kNeoNativeStringType)
	*(CNeoString *)aValue = fAddress;
	else
	ConvertType(&fAddress, kNeoNativeStringType, aValu...
	break;
	case pIQ:
	if (aType == kNeoUShortType)
	*(unsigned short *)aValue = fIQ;
	else
	ConvertType(&fIQ, kNeoUShortType, aValue, aType);
	break;
	default:
	result = NeoInherited::getValue(aTag, aType, aValu...
	}
	return result;
	}
	Boolean CPerson::setValue(const NeoTag aTag, const...
	const void *aValue)
	{
	Boolean result = TRUE;
	switch (aTag) {
	case pNeoName:
	if (aType == kNeoNativeStringType)
	fName = *(CNeoString *)aValue;
	else
	ConvertType(aValue, aType, &fName, kNeoNativeStrin...
	break;
	case pAddress:
	if (aType == kNeoNativeStringType)
	fAddress = *(CNeoString *)aValue;
	else
	ConvertType(aValue, aType, &fAddress, kNeoNativeSt...
	break;
	case pIQ:
	if (aType == kNeoShortType)
	fIQ = *(short *)aValue;
	else
	ConvertType(aValue, aType, &fIQ, kNeoShortType);
	break;
	default:
	result = NeoInherited::setValue(aTag, aType, aValu...
	}
	return result;
	}
	Boolean CPerson::revert(void)
	{
	return (Boolean)(fFather.revert() && NeoInherited:...
	}
	void CPerson::update(CNeoPersist *aObject)
	{
	NeoInherited::update(aObject);
	fName = ((CPerson *)aObject)->fName;
	fAddress = ((CPerson *)aObject)->fAddress;
	fIQ = ((CPerson *)aObject)->fIQ;
	fFather.update(&((CPerson *)aObject)->fFather);
	}
	CPerson *CPerson::getFather(void)
	{
	return (CPerson *)(CNeoPersistNative *)fFather;
	}
	void CPerson::printName(void) const
	{
	char str[256];
	sprintf(str, "Name is %s" NeoEOL, (char *)fName);
	neoPrintf(str);
	}

	CJoker
	const NeoID kJokerID = 26;
	class CJoker : public CPerson
	{
	public:
	CJoker(const CNeoString &aName = "",
	const CNeoString &aFatherName = "");
	static CNeoPersist *New(void);
	NeoID getClassID(void) const;
	/** Joker Member Functions **/
	void skill(void) const;
	void forgetJoke(const CJoke *aJoke);
	CJoke * getJoke(const long aOffset) const;
	long getJokeCount(void) const {return getListCount...
	void learnJoke(CJoke *aJoke);
	};
	CJoker::CJoker(const CNeoString &aName, const CNeo...
	: CPerson(aName, aFatherName, 150)
	{
	setObjClassID(kJokeID);
	}
	CNeoPersist *CJoker::New(void)
	{
	return NeoNew CJoker();
	}
	NeoID CJoker::getClassID(void) const
	{
	return kJokerID;
	}
	void CJoker::learnJoke(CJoke *aJoke)
	{
	// Add the joke to this joker's part list
	addToList(aJoke);
	}
	void CJoker::forgetJoke(const CJoke *aJoke)
	{
	// Remove the joke from this joker's part list
	deleteFromList(aJoke);
	// Note: This joke is still in the database!
	// To remove the joke completely, we would say...
	// if (fMark)
	// gNeoDatabase->removeObject(joke);
	}
	void CJoker::skill(void) const
	{
	long count = getJokeCount();
	CJoke * joke;
	if (count) {
	// Randomly pick a joke
	joke = getJoke((rand()&0x7FFFFFFF) % count);
	NeoAssert(joke);
	neoPrintf("Tells jokes : ");
	joke->printJoke();
	// Don't forget to remove our reference to the jok...
	joke->unrefer();
	}
	else
	// This guy should probably retire.
	neoPrintf("Has no jokes to tell." NeoEOL);
	}

	NeoAccess Iterator Classes
	CJoke *CJoker::getJoke(const long aOffset) const
	{
	CJoke * joke;
	CNeoPartListIterator * iterator = getIterator();
	// Select the aOffset-th joke known to this CJoker...
	iterator->leap(aOffset);
	joke = (CJoke *)iterator->currentObject();
	// Iterators don't add references to objects. So w...
	if (joke)
	joke->referTo();
	delete iterator;
	return joke;
	}
	CJoke
	const NeoID kJokeID = 28;
	class CJoke : public CNeoPersistNative
	{
	public:
	CJoke(const char *aText = ““);
	static CNeoPersist * New(void);
	virtual NeoID getClassID(void) const;
	virtual long getFileLength(const CNeoFormat *aForm...
	/** I/O Member Functions **/
	virtual Boolean commit(CNeoContainerStream *aStrea...
	const Boolean aCompletely,
	const Boolean aCompress, const Boolean aDeeply);
	virtual void readObject(CNeoStream *aStream, const...
	virtual void writeObject(CNeoStream *aStream, cons...
	/** Persistence Member Functions **/
	virtual void add(void);
	virtual Boolean getValue(const NeoTag aTag, const ...
	void *aValue);
	virtual void remove(void);
	virtual Boolean revert(void);
	virtual Boolean setValue(const NeoTag aTag, const ...
	const void *aValue);
	virtual void update(CNeoPersist *aObject);
	/** Joke Management Member Functions **/
	void getJoke(char *aText) {aText = (char*)fJoke.ge...
	long getJokeLength(void) const {return fJoke.getLe...
	void printJoke(void) const;
	void setJoke(const char *aText) {fJoke = aText;}
	protected:
	ENeoString fJoke;
	};
	CNeoPersist *CJoke::New(void)
	{
	return NeoNew CJoke();
	}
	NeoID CJoke::getClassID(void) const
	{
	return kJokeID;
	}
	long CJoke::getFileLength(const CNeoFormat *aForma...
	{
	return NeoInherited::getFileLength(aFormat) + fJok...
	}
	Boolean CJoke::commit(CNeoContainerStream *aStream...
	const Boolean aCompress, const Boolean aDeeply)
	{
	Boolean moved = fJoke.commit(aStream, aCompletely,...
	moved |= NeoInherited::commit(aStream, aCompletely...
	return moved;
	}
	void CJoke::add(void)
	{
	NeoInherited::add();
	fJoke.add();
	}
	void CJoke::remove(void)
	{
	fJoke.remove();
	NeoInherited::remove();
	}
	Boolean CJoke::revert(void)
	{
	return (Boolean)(fJoke.revert() && NeoInherited::r...
	}
	void CJoke::update(CNeoPersist *aObject)
	{
	NeoInherited::update(aObject);
	fJoke.update(&((CJoke *)aObject)->fJoke);
	}
	const void *CJoke::verify(const void *aValue) cons...
	{
	fJoke.verify(aValue);
	return NeoInherited::verify(aValue);
	}
	Boolean CJoke::getValue(const NeoTag aTag, const N...
	{
	Boolean result = TRUE;
	ENeoBlob * blob;
	if (aTag == pJoke) {
	if (aType == kNeoBlobType)
	*(ENeoBlob **)aValue = &fJoke;
	else {
	blob = &fJoke;
	ConvertType(&blob, kNeoBlobType, aValue, aType);
	}
	}
	else
	result = NeoInherited::getValue(aTag, aType, aValu...
	return result;
	}
	Boolean CJoke::setValue(const NeoTag aTag, const N...
	{
	Boolean result = TRUE;
	ENeoBlob * blob;
	if (aTag == pJoke) {
	if (aType == kNeoBlobType)
	fJoke.update(*(ENeoBlob **)aValue);
	else {
	blob = &fJoke;
	ConvertType(aValue, aType, &blob, kNeoBlobType);
	}
	}
	else
	result = NeoInherited::setValue(aTag, aType, aValu...
	return result;
	}
	void CJoke::readObject(CNeoStream *aStream, const ...
	{
	CNeoDebugIO checker(aStream, FALSE, this);
	NeoInherited::readObject(aStream, aTag);
	fJoke.readObject(aStream, pJoke);
	}
	void CJoke::writeObject(CNeoStream *aStream, const...
	{
	CNeoDebugIO checker(aStream, TRUE, this);
	NeoInherited::writeObject(aStream, aTag);
	fJoke.writeObject(aStream, pJoke);
	}

	CClown
	const NeoID kClownID = 27;
	class CClown : public CPerson
	{
	public:
	/** Instance Member Functions **/
	CClown(const CNeoString &aName = "",
	const CNeoString &aFatherName = "",
	const long aShoeSize = 15);
	static CNeoPersist * New(void);
	virtual NeoID getClassID(void) const;
	virtual long getFileLength(const CNeoFormat *aForm...
	/** I/O Member Functions **/
	virtual void readObject(CNeoStream *aStream, const...
	virtual void writeObject(CNeoStream *aStream, cons...
	virtual void update(CNeoPersist *aObject);
	/** Clown Member Functions **/
	CPie * bakePie(const char *aFilling = "Custard");
	CPie * getPie(const long aIndex);
	long getPieCount(void) const {return getListCount(...
	long getShoeSize(void) const {return fShoeSize;}
	virtual Boolean getValue(const NeoTag aTag, const ...
	void *aValue);
	void setShoeSize(const long aShoeSize)
	{fShoeSize = aShoeSize;}
	virtual Boolean setValue(const NeoTag aTag, const ...
	const void *aValue);
	virtual void skill(void);
	void throwPie(CPie *aPie);
	protected:
	long fShoeSize;
	};
	CClown::CClown(const CNeoString &aName, const CNeo...
	const long aShoeSize)
	: CPerson(aName, aFatherName, 120)
	{
	fShoeSize = aShoeSize;
	setObjClassID(kPieID);
	}
	CNeoPersist *CClown::New(void)
	{
	return NeoNew CClown();
	}
	NeoID CClown::getClassID(void) const
	{
	return kClownID;
	}
	long CClown::getFileLength(const CNeoFormat *aForm...
	{
	return NeoInherited::getFileLength(aFormat) + size...
	}
	void CClown::skill(void) const
	{
	printf(“Throws %s pies\n”, fPietype);
	}
	void CClown::skill(void)
	{
	long count = getPieCount();
	CPie * pie;
	if (count) {
	// Randomly pick a pie
	pie = getPie((rand()&0x7FFFFFFF) % count);
	NeoAssert(pie);
	neoPrintf("Throws pies: ");
	throwPie(pie);
	// Don't forget to remove our reference to the pie...
	pie->unrefer();
	}
	else
	// This guy should probably retire.
	neoPrintf("Has no pies to throw." NeoEOL);
	}
	CPie *CClown::getPie(const long aIndex)
	{
	CPie * pie;
	CNeoPartListIterator * iterator = getIterator();
	iterator->leap(aIndex);
	pie = (CPie *)iterator->currentObject();
	// Iterators don't add references to objects. So w...
	if (pie)
	pie->referTo();
	delete iterator;
	return pie;
	}
	void CClown::throwPie(CPie *aPie)
	{
	char Filling[kMaxFillingName];
	char str[256];
	// Remove the pie from this clown's part list
	deleteFromList(aPie);
	// Now remove it from the database completely.
	gNeoDatabase->removeObject(aPie);
	// Throw it!
	aPie->getFilling(Filling);
	sprintf(str, "Here's a %s pie in your face!" NeoEO...
	neoPrintf(str);
	}

	CPie
	class CPie : public CNeoPersistNative
	{
	public:
	/** Instance Member Functions **/
	CPie(const char *aFilling = "Custard");
	static CNeoPersist * New(void);
	virtual NeoID getClassID(void) const;
	virtual long getFileLength(const CNeoFormat *aForm...
	/** Access Member Functions **/
	virtual Boolean getValue(const NeoTag aTag, const ...
	void *aValue);
	virtual Boolean setValue(const NeoTag aTag, const ...
	const void *aValue);
	/** I/O Member Functions **/
	virtual void readObject(CNeoStream *aStream, const...
	virtual void writeObject(CNeoStream *aStream, cons...
	virtual void update(CNeoPersist *aObject);
	/** Pie Member Functions **/
	void getFilling(char *aText) const
	{strncpy(aText, fFilling, kMaxFillingName);}
	void setFilling(const char *aText)
	{strncpy(fFilling, aText, kMaxFillingName);}
	protected:
	char fFilling[kMaxFillingName];
	};
	CNeoPersist *CPie::New(void)
	{
	return NeoNew CPie();
	}
	NeoID CPie::getClassID(void) const
	{
	return kPieID;
	}
	long CPie::getFileLength(const CNeoFormat *aFormat...
	{
	NeoUsed(aFormat);
	return NeoInherited::getFileLength(aFormat) + kMax...
	}
	void CPie::readObject(CNeoStream *aStream, const N...
	{
	CNeoDebugIO checker(aStream, FALSE, this);
	NeoInherited::readObject(aStream, aTag);
	aStream->readString(fPieType, sizeof(fPieType));
	}
	void CPie::writeObject(CNeoStream *aStream, const ...
	{
	CNeoDebugIO checker(aStream, TRUE, this);
	NeoInherited::writeObject(aStream, aTag);
	aStream->writeString(fPieType, sizeof(fPieType));
	}

	The Laughs Application Class
	The Constructor
	CLaughsApp::CLaughsApp(void)
	{
	CNeoMetaClass * meta;
	// Note our file type so that we can be particular...
	FFileType = kLaughsFileType;
	fFormat0 = nil;
	fFormat1 = nil;
	fFormat2 = nil;
	fFormat3 = nil;
	// Add the application-specific metaclasses to the...
	(void)NeoNew CNeoMetaClass(kNeoIDListID, kNeoNullC...
	NeoNewGetOnePersist(CNeoIDList::New),
	NeoNewKeyManager(CNeoIDList::KeyManager));
	(void)NeoNew CNeoMetaClass(kPersonID, kNeoPersistI...
	NeoNewGetOnePersist(CPerson::New));
	(void)NeoNew CNeoMetaClass(kJokerID, kPersonID, "C...
	NeoNewGetOnePersist(CJoker::New));
	(void)NeoNew CNeoMetaClass(kJokeID, kNeoPersistID,...
	NeoNewGetOnePersist(CJoke::New));
	(void)NeoNew CNeoMetaClass(kClownID, kPersonID, "C...
	NeoNewGetOnePersist(CClown::New));
	(void)NeoNew CNeoMetaClass(kPieID, kNeoPersistID, ...
	NeoNewGetOnePersist(CPie::New));
	meta = CNeoMetaClass::GetMetaClass(kPersonID);
	meta->addKey(kNeoNativeStringIndexID, pNeoName, kN...
	// Let the games begin.
	printf(“Start Laughing...\n\n”);
	}

	Creating a Document
	CNeoDoc *CLaughsApp::createDocument(void)
	{
	CLaughsDoc * document = nil;
	NEOTRYTO {
	const Boolean printable = FALSE;
	const Boolean newFile = TRUE;
	const Boolean remote = FALSE;
	// Create your document.
	//
	// The arguments indicate whether the document is....
	// printable (FALSE),
	// a new file (TRUE),
	// remote (FALSE).
	document = new CLaughsDoc(printable, newFile, remo...
	NeoFailNil(document);
	document->SetSuperCommander(this);
	// Call the document’s newDatabase function.
	document->newDatabase();
	}
	NEOCLEANUP {
	// This exception handler gets executed if a failu...
	// anywhere within the scope of the above NEOTRY b...
	// this indicates that a new doc could not be crea...
	// check if an object had been allocated and if it...
	// it. The exception will propagate up to the next...
	// handler, which displays an error alert.
	if (document &&
	!document->getDatabase()->isOpen()) {
	delete document;
	document = nil;
	}
	}
	NEOENDTRYTO;
	return document;
	}

	Opening an Existing Database
	void CLaughsApp::OpenDocument(FSSpec *aSpec)
	{
	Boolean remote;
	CLaughsDoc * document = nil;
	VOLATILE(document);
	NEOTRYTO {
	const Boolean printable = TRUE;
	const Boolean newFile = FALSE;
	// Our parent will check to see if this is a docum...
	// already opened. If we find the file already ope...
	// then fDocument will refer to it. If the file is...
	// not by this app, then the parent will signal a ...
	NeoInherited::OpenDocument(aSpec);
	if (fDocument)
	return;
	remote = FALSE;
	// Create your document.
	document = new CLaughsDoc(printable, newFile, remo...
	NeoFailNil(document);
	document->SetSuperCommander(this); // PowerPlant l...
	// Call the document's openFile function. The docu...
	// a window, open the file specified in the file s...
	// record, and display it in its window.
	document->openFile(aSpec);
	}
	NEOCLEANUP {
	if (document &&
	!document->getDatabase()->isOpen())
	delete document;
	}
	NEOENDTRYTO;
	}

	The Laughs Document Class
	const OSType kLaughsFileType = 'Ne6d';
	class CLaughsDoc : public CNeoDocRoot {
	public:
	CLaughsDoc(const Boolean aPrintable,
	const Boolean aNewFile, const Boolean aRemote);
	virtual void buildWindow(void);
	virtual void newDatabase(void);
	virtual void openFile(FSSpec *aSpec);
	void createObjects(void);
	void printOut(void);
	};
	Creating a New Database
	void CLaughsDoc::newDatabase(void)
	{
	CNeoDatabase * database = getDatabase();
	NeoFileSpec spec;
	fNewDatabase = TRUE;
	fOpenMode = NeoReadWritePerm;
	NeoInherited::newDatabase();
	// Set the default name which appears in the get f...
	spec.vRefNum = 0;
	spec.parID = 0;
	NeoStringCopy("\pLaughter", spec.name);
	database->setFileSpec(spec);
	// Stuff the database with objects.
	createObjects();
	// Commit the changes that we made to the database...
	DoSave();
	// That's all folks!
	printf("\nDone!\n\n");
	}

	Opening an Existing Database
	void CLaughsDoc::openFile(FSSpec *aSpec)
	{
	CNeoDatabase * database = getDatabase();
	fOpenMode = NeoReadPerm;
	NeoInherited::openFile(aSpec);
	// Find each of the objects in the database in tur...
	printOut();
	// That's all folks!
	printf("\nDone!\n\n");
	}

	Adding Objects to the Database
	// Tell them what we're about to do.
	database->getName(string);
	if (!string[0])
	string = "Untitled";
	sprintf(str,"Storing 4 Jokers and 3 Clowns in \"%s...
	neoPrintf(str);
	// Each joke is created and added to the database....
	// Note: An object ID is assigned automatically by...
	// Know any good jokes? How 'bout this one...
	joke1 = NeoNew CJoke("The world’s shortest poem: F...
	database->addObject(joke1);
	// Is this a joke???
	joke2 = NeoNew CJoke("My dog’s got no nose?");
	database->addObject(joke2);
	// OK, two more...
	joke3 = NeoNew CJoke("Cogito ergo spud - I think t...
	database->addObject(joke3);
	joke4 = NeoNew CJoke("And so I said to the guy..."...
	database->addObject(joke4);
	// Create a joker object.
	joker = NeoNew CJoker("Adam");
	// Teach it a couple of jokes.
	joker->learnJoke(joke1);
	joker->learnJoke(joke2);
	// Add it to the database.
	database->addObject(joker);
	// Don't need this guy any more. Remove our refere...
	joker->unrefer();
	joker = nil;
	// Another joker
	joker = NeoNew CJoker("John", "Adam");
	joker->learnJoke(joke3);
	joker->learnJoke(joke4);
	database->addObject(joker);
	joker->unrefer();
	joker = nil;
	// This one steals others' jokes
	joker = NeoNew CJoker("Steve", "John");
	joker->learnJoke(joke1);
	joker->learnJoke(joke2);
	joker->learnJoke(joke3);
	joker->learnJoke(joke4);
	database->addObject(joker);
	joker->unrefer();
	joker = nil;
	// Create another joker.
	joker = NeoNew CJoker("Harry", "Adam");
	// Add it to the database.
	database->addObject(joker);
	// This guy steals jokes.
	joker->learnJoke(joke2);
	// Remove our reference to the joker and the jokes...
	joker->unrefer();
	joker = nil;
	joke1->unrefer();
	joke1 = nil;
	joke2->unrefer();
	joke2 = nil;
	joke3->unrefer();
	joke3 = nil;
	joke4->unrefer();
	joke4 = nil;
	// Create a clown.
	clown = NeoNew CClown("Fred", "John");
	// Add it to the database.
	database->addObject(clown);
	// Build up its arsenal.
	pie = clown->bakePie("Jello");
	pie->unrefer();
	pie = clown->bakePie("Marshmellow");
	pie->unrefer();
	pie = clown->bakePie("Custard");
	pie->unrefer();
	pie = clown->bakePie("Cool Whip®");
	pie->unrefer();
	pie = clown->bakePie("Yogurt");
	pie->unrefer();
	// Remember to remove our reference when we're don...
	clown->unrefer();
	clown = nil;
	// Create another clown.
	clown = NeoNew CClown("Donald", "Steve");
	database->addObject(clown);
	// Six pies all the same.
	for (i = 1; i <= 6; i++) {
	pie = clown->bakePie("Lemon-meringue");
	pie->unrefer();
	}
	// Remove our reference
	clown->unrefer();
	clown = nil;
	// And another clown.
	clown = NeoNew CClown("Eve");
	database->addObject(clown);
	// Four pies all the same.
	for (i = 1; i <= 4; i++) {
	pie = clown->bakePie("Banana cream");
	pie->unrefer();
	}
	// Remove our reference
	clown->unrefer();
	clown = nil;
	}

	Locating Objects in a Database
	void CLaughsDoc::printOut(void)
	{
	CPerson * person;
	CPerson * father;
	CNeoNativeStringSelect key(pNeoName, "");
	CNeoDatabase * database = getDatabase();
	CNeoIterator * iterator;
	CNeoMetaClass * meta;
	CNeoString string;
	char str[256];
	// Tell them what we're about to do.
	database->getName(string);
	sprintf(str, "Restoring %ld Jokers and %ld Clowns ...
	database->getObjectCount(kJokerID, FALSE),
	database->getObjectCount(kClownID, FALSE), (char *...
	neoPrintf(str);
	meta = CNeoMetaClass::GetMetaClass(kPersonID);
	// Remove the existing non-consolidated indices fr...
	meta->removeKeyByID(kNeoNativeStringIndexID, pNeoN...
	// Add the new consolidated index to the metaclass...
	meta->addKey(kNeoNativeStringIndexID, pNeoName, kP...
	// Ask database to update indices to correspond to...
	database->updateIndices();
	key.setMatchAll(TRUE);
	// We want to iterate through all objects having b...
	// in the alphabetical order.
	iterator = database->getIterator(kPersonID, &key, ...
	person = (CPerson *)iterator->currentObject();
	while(person) {
	person->autoReferTo();
	person->printName();
	father = person->getFather();
	if (father) {
	neoPrintf("Father's ");
	father->printName();
	}
	else
	neoPrintf("This is an orphan" NeoEOL);
	person->skill();
	neoPrintf(NeoEOL);
	person->autoUnrefer();
	person = (CPerson *)iterator->nextObject();
	}
	delete iterator;
	}

	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

