
What's New
in Omnis Studio 3

October 2000

The software this document describes is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of the agreement. Names of persons, corporations, or
products used in the tutorials and examples of this manual are fictitious. No part of this publication may
be reproduced, transmitted, stored in a retrieval system or translated into any language in any form by
any means without the written permission of Omnis Software.

© Omnis Software, Inc., and its licensors 2000. All rights reserved.
Portions © Copyright Microsoft Corporation.

Omnis® is a registered trademark and Omnis 5™, Omnis 7™, Omnis Studio, and Omnis Web Client
are trademarks of Omnis Software, Inc.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows 95, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other
countries.

Apple, the Apple logo, AppleTalk, and Macintosh are registered trademarks and MacOS, Power
Macintosh and PowerPC are trademarks of Apple Computer, Inc.

Linux is a trademark of Linus Torvalds.

IBM and AIX is a registered trademark and OS/2 is a trademark of International Business Machines
Corporation.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company
Ltd.

Sun, Sun Microsystems, the Sun Logo, Solaris, Java, and Catalyst are trademarks or registered
trademarks of Sun Microsystems Inc.

HP-UX is a trademark of Hewlett Packard.

OSF/Motif is a trademark of the Open Software Foundation.

Acrobat is a trademark of Adobe Systems, Inc.

ORACLE is a registered trademark and SQL*NET is a trademark of Oracle Corporation.

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase
Inc.

INFORMIX is a registered trademark of Informix Software, Inc.

EDA/SQL is a registered trademark of Information Builders, Inc.

CodeWarrior is a trade mark of Metrowerks, Inc.

Other products mentioned are trademarks or registered trademarks of their corporations.

Table of Contents 3

Table of Contents
ABOUT THIS MANUAL...4

CONVERTING STUDIO 2.X APPS..4

OMNIS WEB CLIENT ..5

MULTI-THREADING..5
Introduction ..5
Multiple Method Stacks ..5
Using the Server ...6
Database Access...6
Method Commands...7

LOAD SHARING..9
Introduction ..9
Setting up load sharing...10
Load Sharing Mechanism...11
Using version 2.x web clients ...12

CLIENT METHOD EXECUTION...12
MULTIPLE FORMS..13
OTHER WEB CLIENT ENHANCEMENTS...................................14

IMPROVED APPLICATION DESIGN TOOLS15

COMPONENT STORE..15
METHOD EDITOR...15
OTHER MODIFICATIONS...16

MISCELLANEOUS FEATURES17

4 About This Manual

About This Manual
This document describes the new features and enhancements in Omnis Studio 3. This
version has many new features for the Omnis Web Client, support for new operating
systems and improvements to the IDE. Additional info is found in the Readme.txt.

This manual is for existing Omnis Studio version 2 users only.

Converting Studio 2.x apps
IMPORTANT NOTE: Omnis Studio 3 will convert Studio version 2.x apps automatically.
After you have opened existing Studio libraries in Studio 3 they will no longer work with
Studio 2. Therefore you should make secure backups of all the libraries you wish to convert
to Omnis Studio 3 before opening them in Studio 3.

Multi-threading 5

Omnis Web Client
Multi-threading

Introduction
In Studio 3 the Omnis Server allows multiple requests to be processed allowing smoother
allocation of available processor time and avoiding any lengthy delays on the client. To
handle these multiple requests the Omnis Server is now multi-threaded.

The new multi-threaded server (MTS) maintains a pool of method stacks that can process
web client requests simultaneously. The pooling mechanism allows a balance to be struck
between performance and server resources - the number of method stacks in the pool is
configurable as the $root.$prefs.$serverstacks property.

Multiple Method Stacks
The standard Studio program contains a single method stack. This means that (broadly
speaking) once a method call has been pushed onto the stack no other method call can begin
to execute until the first call has completed. In contrast the MTS contains a pool of method
stacks which are available to process web client requests. When a request to execute a
method is received from a web client that method call is pushed onto any unused stack or, if
there are no unused stacks, the message is queued until one becomes available. Each
method stack runs in its own thread which means that if a method stack is stalled (for
example it is waiting for the database server) the other stacks will continue to execute.

Typically the MTS has to cope with a very large number of simultaneous clients each with
their own remote form and remote task instances. Of course in typical cases only a small
proportion of clients will require the use of the server at any one time. In any case multi-
threading does not increase the server processor time available, it just allows the available
processor time to be allocated in a smoother way. The method stack pool mechanism allows
a balance to be struck between performance and server resources - the number of method
stacks in the pool is configurable as the $root.$prefs.$serverstacks property.

This means that a remote client will not get the same method stack every time it executes a
method on the server. Each method stack contains its own state which, apart from during an
individual method call, does not belong to any particular client. This state includes CRBs
for all files and variables (apart from class variables) and such modes as the current list. A
client cannot rely on any of this state being preserved across different method calls, the only
thing belonging to the client are its instance and task variables. So a client must do such
things as setting the main file and current list each time one of its methods executes, and

6 Omnis Web Client

should not rely on such things as the values of memory-only fields being maintained across
method calls. As a special case the class variables for the remote task and form classes are
shared amongst all clients so can be used to hold shared data (see below for the warnings
about the care needed when using shared variables).

Using the Ser ver
When the MTS starts up it open's the libraries, datafiles and SQL session pools required by
the clients (see below for description of a SQL session pool). The Start server command is
then issued to cause the method stacks and associated threads to be created and to cause
Studio to start to listen for web client requests. The Start server command can specify an
optional stack initialisation method; when specified this method is pushed onto every client
method stack and allowed to execute (so if $serverstacks is 5 it will execute five times), so
it can be used to initialise the state of the method stacks. The Start server command
generates a fatal error if due to lack of resources or some other reason it is unable to
complete successfully.

When the server is to be stopped it is recommended the Stop server command is issued but
quitting the Studio program achieves the same results.

When the server is active it continues to be responsive to local events and could, for
example, be displaying a window with 'Start server' and 'Stop server' buttons. It is not
recommended that the server program performs any substantial tasks when it is listening for
client requests.

Any runtime errors generated by client methods are reported in the trace log (using a similar
mechanism as errors during library conversion), but this default behaviour can be
overridden by making sure each client method stack has an error handler. The stack
initialization method call for the Start server command can be used to define an error
handler for each method stack.

Database Access
There is a completely new DAM interface for Studio 3 that supports multi-threading on the
Omnis server. This means there will be new DAMS for Studio 3.0, including ODBC,
ORACLE, DB2 and SYBASE.

The new DAMs are implemented as non-visual external components. The new DAMs will
not work with the current 4GL SQL commands, rather you need to use object variables
based on the new non-visual DAMs, and interact with a DAM using the methods of the
object. Using the non-visual approach an application creates object variables of a particular
DAM class which are instantiated when the object is created by the component. There is a
group of common methods which apply to all DAM objects and a set of DAM specific
methods based on the type of object.

Multi-threading 7

Database sessions
There are new multi-threaded DAMs available. These new DAMs are non-visual
components that are instantiated in object variables to become the equivalent of sessions.

Tables and schemas
The table class has been revised to support the new DAMs. Tables that use earlier DAMs
will function in Studio 3.0 but not in a client method running on the MTS.

Current D AMs
The earlier DAMs and commands (including such concepts as the current session) are
supported in 3.0 for backward compatibility. However, the old DAMs are not safe in a
multi-threaded environment so the SQL commands cannot be used in a client method
running on the MTS.

Omnis SQL
Note that there is no multi-threaded DAM for Omnis SQL. This means that Omnis SQL
cannot be used with MTS.

Native datafile access
There should be no problems with using the native datafile commands with the MTS. The
list of open datafiles is shared amongst all the method stacks and all the datafiles which
might be used by the clients should be opened before the Start server command is issued.

Each method stack has its own set of CRBs for the read/write, read-only and memory-only
files and also has its own main file, find tables, and the various modes used by the native
datafile commands. Since these belong to a method stack and not a client it is important that
client methods do not make any assumptions about the modes, contents of the CRBs, etc.
between method calls. In particular there is no way that a client can assume that a find table
exists between method calls. Of course these restrictions also apply to single threaded
Studio when it is acting as a web client server.

Method Commands
There is a new Threads… command group which contains the following commands:

Start ser ver
This command is used to create the client method stacks and associated threads and start the
thread which listens for client requests. It takes an optional Stack initialization method as a
parameter as described under 'Using the Server' above. The flag is cleared if used in a single
threaded Studio or the serial number does not allow clients to connect. A fatal error is
generated if for some other reason it is not possible to create the stacks and threads and start
the listener.

8 Omnis Web Client

Stop server
This commands stops the server from responding to client requests. Once the server has
been started it is recommended it is stopped before quitting the Studio program, before
using the Studio program for anything apart from serving client requests, and before
opening or closing any datafiles or libraries.

The Stop server command disposes of all remote task and form instances. The resources
used by the client stacks and threads are not released but they will be reused by the next
Start server command.

Begin and End critical block
These commands are used to denote a section of code which needs to execute in single
threaded mode without allowing other client methods to execute. For example:

Set current list cList

Begin critical block

Build list from file

End critical block

Here cList is a class variable which is shared amongst the clients and the critical block is
used to prevent other clients from accessing the list whilst it is partly built. Generally class
variables should only be used when the shared functionality is essential and only with care:

Calculate cString as 'abc' ;; OK

Calculate cString as $cinst.$xyz()
; only OK inside a critical block

Simple atomic operations such as the first line are safe, but when a method call is involved
it may be interrupted by other threads and cause problems. Class variables should not be as
bind variables or as the return list for SQL operations.

Yield to other threads
This command is a hint that the executing thread is waiting for other threads and is prepared
to yield its processor time. It can be used when waiting for semaphores (since with the MTS
another client stack could be holding the semaphore):

Do not wait for semaphores

Repeat

Prepare for edit

If flag true

Break to end of loop

End If

Yield to other threads

Until break

Load sharing 9

Commands which are not available to a client
The following commands are not available for client methods running on the MTS. They
usually generate a ' Command not available when executing a client method' fatal error but
some (such as the Debugger… group) simply do nothing:

Start server

Stop server

Enter data

Prompted find

The Libraries… group

The Classes… group

The Logon… group

The Sessions and cursors… group

The Select table… group

The Fetch… group

The SQL scripts… group

The Client import files… group

Open data file

Prompt for data file

Create data file

Close data file

Open lookup file

Close lookup file

The Data management… group

The Message boxes… group

The Debugger… group

Quit Omnis

Any other command which would cause a dialog to be displayed on the server are not
available for client methods running on the MTS.

Similarly the notation for opening and closing libraries and datafiles is not functional in a
client method. There are of course many other commands and notation which does not make
sense to try to use from a client method.

Load sharing
Introduction
Load sharing allows a pool of multi-threaded Omnis server processes, running on one or
more machines, to serve clients. Once a client connects to an Omnis server process, all
subsequent requests for that client need to be handled by the same Omnis server process.
Therefore, load sharing provides a mechanism that assigns a new client connection to an

10 Omnis Web Client

Omnis server process. Load sharing is implemented for Win32 and Linux Omnis servers
only.

The OmnisServer property in an HTML page currently has the syntax [(IP address|domain
name):](service name|port number). To use load sharing, you prefix this property with a
name for the pool of Omnis server processes and a comma, for example “Omnis,6000”, or
“Omnis,194.131.70.197:6000”. In this case, the address information in the property no
longer addresses an Omnis server. Instead, it addresses a new module, a load sharing
process.

When a new connection arrives at the Web Server plug-in (ISAPI, CGI or Apache module
located in the cgi-bin), the plug-in recognises the new syntax of the OmnisServer property.
If it is prefixed by a pool name, the plug-in connects to the load sharing process, and sends
it a message that asks for the address of a server process in the pool.

The load sharing process typically returns the address and port number of the least busy
process in the pool.

The plug-in then connects to this process, and sends the web client connection to it. When
the plug-in responds to the client, it includes the address of the Omnis server process in the
response.

When the client sends subsequent messages to the Web Server for this web client
connection, it sends the address returned in the connect response instead of the OmnisServer
property. Thus the only additional overhead imposed by load sharing occurs during
connection setup.

So how does Omnis know (1.) which Omnis server processes exist, and (2.) which Omnis
server process is the least busy? The load sharing process (LSP) has an .ini file, which
contains the pool names for the pools for which it is responsible, and for each pool, the
addresses of the Omnis server processes in the pool. Periodically, the load sharing process
polls each Omnis server process, and asks it for the percentage of Web Client connections
currently in use (using the serial number as the maximum), and if available, an estimate of
its CPU utilisation. The load sharing process combines this information to determine which
process is the least busy.

The time interval between polls of each Omnis server process is configurable via the .ini
file. Typically, once every 10 or 20 seconds is frequent enough.

Setting up load sharing
Note Studio 3.0 and older clients can connect to a load sharing process (LSP).

On the www server
The html file will have the 'OmnisServer' property changed to the LSP, for example:

OmnisServer="Omnis,6001" or
OmnisServer="Omnis,123.456.789.010:6001"

Load sharing 11

Where Omnis is the name of a pool of Omnis server processes and 6001 is it's port number.

The LSP would typically be running on the www server. This is a single executable
omnislsp.exe. A configuration file (omnislsp.ini) must be made to accompany it, this takes
the following format:

[Setup]

Port=6001

QuietMode=0

BucketSize=100

LogLineThreshold=16

Pool1=Omnis

[Omnis]

PollTimer=10

Server1=123.145.71.123:7001

Server2=123.145.71.124:7002

The commands for the lsp are: omnislsp -start
omnislsp -stop

(With the omnislsp.ini in the same directory)

On the LSP servers
The servers specified in the omnislsp.ini do not run any www server software. The servers
may be stopped and restarted without the need to stop the LSP. More information is
available in the Studio 3.0 functional specification.

Load Sharing Mechanism
The load sharing process periodically polls the processes in a pool of Omnis Server
processes. Each server returns the following information:

• The current number of connections to the server

• The maximum number of concurrent connections allowed to the server (specified by
the serial number)

• The number of requests (mainly events or new connections) received since the last poll

• The total elapsed time in milliseconds taken to process the requests

The load sharing process organizes the servers into groups, based on the results of the
information returned from polling the servers. It maintains a configurable number of groups
(N), numbered 0 to (N-1). Using a bucket size (B milliseconds), and the average time to
process a request (T), calculated from the results of the most recent poll, a server is in group
G if and only if:

G*B <= T and T < (G+1)*B

12 Omnis Web Client

One exception is that if T > N*B, then the server belongs to group N-1.

Thus, the servers are organized into groups based on how busy they are.

When a connection request arrives at the load sharing process, it allocates a server to the
request as follows. It traverses the groups, from 0 to N-1, looking for a server that has some
free connections. Within a group, it looks for the server with the smallest percentage of
connections in use, using the results of the last poll. If there is more than one server with the
same smallest percentage of connections in use, then the process allocates the connection to
the server to which it least recently allocated a connection. At this point, the load sharing
process also updates the connection statistics from the last poll, to reflect the new
connection. The traversal stops when a free process has been found.

Using version 2.x web clients
A 2.4 client or earlier will receive an error if it tries to connect to a 3.0 Omnis server, set up
for load sharing. If you want 2.4 clients to be able to connect to 3.0 Omnis servers using
load sharing (perhaps to enable the 2.4 client to be updated to 3.0), you can do so by
specifying an additional server address in the OmnisServer property in your HTML page
containing the web client plug-in. For example:

OmnisServer = "OMNIS,194.131.70.122:6000;194.131.70.122:5912"
or
OmnisServer="OMNIS,6000;5912"

In the case where there are two addresses in the OmnisServer property, separated by a
semicolon, the first address will be used by 3.0 and later clients, and the second by 2.4 and
earlier clients. The address for 2.4 clients must directly address an Omnis server, that is all
load sharing parameters are irrelevant and should not be included.

Client method execution
You can specify that a remote form method is to run on the client rather than the server.
Right-click on the remote form’s method name and select the Execute On Web Client pop-
up menu option.

This avoids the overhead of sending event messages between the client and server and
reduces the workload on the server.

You should only allow simple methods to be executed on the client, as the web client
libraries need to be kept as small as possible and the amount of information (such as
variable values) available on the client is limited.

Multiple forms 13

Multiple forms
You can now open more than one form within a single web client connection, that is, within
a single remote task instance. At any one time, only one of these multiple instances is
visible, and the forms must be from the same library.

Studio 2.2 introduced the $changeform() method of a remote task instance. Studio 3.0
contains two further remote task instance methods, $openform() and $closeform(). Like
$changeform(), both these methods take a single argument, the form name.

If the form passed to $openform() already has a remote form instance open in the context of
the current task instance, then it becomes the visible form for the current task. Otherwise,
Omnis constructs a new instance of the remote form in the current task, and makes the new
remote form instance the visible form. This behavior is analogous to the $openonce()
method of a window class.

The $closeform() method destructs the remote form instance for the named form. It is
possible to close the last open remote form instance, but this is not recommended. If the
referenced form is not visible, the client observes no affect; otherwise, the most recently
visible open remote form instance becomes visible.

There are some further restrictions to note:

• $closeform, $openform and $changeform cannot be used in the constructor or
destructor of a remote form instance or remote task instance. If used, OMNIS generates
a runtime error.

• Multiple calls to $openform or $changeform during the processing of a single event
will result in only the last call to $openform or $changeform having any affect.

• Calling $showurl or $showmessage in the destructor of a remote form has no affect.

• All forms must be in the same library.

You should use task variables to handle communication between multiple remote form
instances in a remote task instance.

To facilitate communication between different remote form instances, remote forms can
also receive one event, evFormToTop. In design mode, you can enable this event for a
form, using the $events property of the form. The event generates a call to $event in the
class methods group of the form. evFormToTop occurs when an existing remote form is
about to become visible on the client as a result of a call or calls to $openform or
$closeform.

14 Omnis Web Client

Other Web Client enhancements
• A headed list box property allowing you to hide the heading

• Remote form properties providing Enter and Cancel key functionality

• An ActiveX/Plug-in property that speeds up secure connections by identifying the
secure URL of the OmnisAPI/CGI

• New controls including Icon Array, Marquee, Animated GIF and a background line
object

• An enhanced $showurl, allowing you to display a browser window with no title

• A mechanism to update the core client files

• Ability to print reports directly (Windows and Mac only)

Component Store 15

Improved application
design tools
Component Store

The Component Store now defaults to an industry-standard label-free palette:

Each icon has a tooltip explaining which group of components it displays or which
wizard/template it loads.

This new design makes it quicker to locate the wizard or template you want.

Method Editor
The method editor now has hidden toolbar droplists/popup menus, plus a versatile tree-style
method list.

Should the function list be hidden, the currently method of selection via the toolbar
droplists/popup menus will be available.

16 Improved application design tools

Other modifications
• The automatic notation completer provides descriptive tooltips and multiple choices

where available

• A find-and-replace class notation method, to support automated translation tools

• The Icon Editor supports true color

Other modifications 17

Miscellaneous features
• Omnis Studio 3 supports some Windows 2000 features such as the new style file

dialogs.

• A timeout field lets users specify how many seconds Omnis should wait when writing
to or reading from a port

• Mac USB support for serial devices

• A modified Port Parameters Structure (PRIportparms) and Port Destination Structure
(PRIdestParmStruct) for all platforms

• Clipboard support for external objects

• Report display enhancements

How to use this manual
The on-line documentation is designed to make the task of identifying and accessing
information about Omnis Studio as easy and intuitive as possible.

You can navigate this PDF document, or find topics, in a number of different ways.

Bookmarks
Bookmarks mark each topic in a document. To view the bookmarks in this
document, click on the Bookmark icon on the Acrobat toolbar or select the
View>>Bookmarks and Page menu item. In Acrobat Reader 4, you can click
on the Bookmarks tab.

Click on an arrow icon to open or close a topic, and click on a topic name or double-click a
page icon to move directly to a topic.

Thumbnails
Thumbnails are small images of each page in the document. To view the
Thumbnails in this document click on the Thumbnails button on the Acrobat
toolbar, or select the View>>Thumbnails and Page menu item. In Acrobat
Reader 4, you can click on the Thumbnails tab.

You can click on a thumbnail to jump to that page. Also you can adjust the view of the current
page by moving and/or sizing the gray page-view box shown on the current thumbnail.

Browsing
You can use the Browse buttons on the Acrobat toolbar to
move back and forth through the document on a page by
page basis. You can also click on the Go Back to return to
your last view or location.

Find
You can find a text string using the Tools>>Find menu item. To find the next occurrence of the
text you can use the Tools>>Find Again option. If you reach the end of the document, you can
use the Ctrl-Home key to go to the beginning and continue your find.
See also Search (on the next page of this guide).

Search
If you have the Acrobat Search plug-in (available under the Tools>>Search menu in some
versions of Acrobat Exchange and Reader), you can use the Studio Index to perform full-text
searches of the entire Omnis Studio on-line documentation set. Searching the Studio Index is
much faster than using the Find command, which reads every word on every page in the current
document only.

To Search the Studio Index, select Tools>>Search>>Indexes to locate
the Studio index (Index.pdx) on the Omnis CD. Next, select
Tools>>Search>>Query to define your search text: you can use Word
Stemming, Match Case, Sounds Like, wildcards, and so on (refer to the
Acrobat Search.pdf file for details about specifying a query). In the Search Results window,
double-click on a document name (the first one probably contains the most references). Acrobat
opens the document and highlights the text. To go to the next or previous occurrence of the
text, use the Search Next or Search Previous button on the Acrobat toolbar.

Grabbing Text from the Screen
You can cut and paste text from this document into the clipboard using the
Text tool. For example, you could copy a method or code snippet and paste it
into the Omnis method editor.

Getting Help
For more information about using Acrobat Reader see the PDF documents installed with the
Reader files, or select the Help menu on the main Reader menu bar.

	What's New in Omnis Studio 3
	Table of Contents
	About this manual
	Converting Studio 2.x apps

	Omnis Web Client
	Multi-threading
	Introduction
	Multiple method stacks
	Using the server
	Database access
	Method commands

	Load sharing
	Client method execution
	Multiple forms
	Other web client enhancements

	Improved application design tools
	Component store
	Method editor
	Other modifications

	Miscellaneous features

	How to use this maual
	Bookmarks
	Thumbnails
	Browsing
	Find
	Search
	Grabbing Text from the Screen
	Getting Help in Acrobat

