CardLayoutDemo.java

Overview

Class CardLayoutDemo and supporting classes implement the CardLayout layout manager. Push buttons cause different cards to appear, and each card contains some text describing the use of CardLayout.

Summary

interface CardConstants

This interface contains constants which are used throughout the various classes.

class CardLogicError extends Exception

This exception is thrown if the request to show a card is invalid.

class CardContents implements CardConstants

This class contains the text for each card.

final class CardContentsEnumerator implements Enumeration

Class CardContents refers to this enumerator.

class MultiLineLabelX extends MultiLineLabel

Class MultiLineLabelX contains the text which appears on the screen.

class CardPanel extends Panel implements CardConstants

This class contains the MultiLineLabelX objects.

class Cards extends Panel implements CardConstants

This class is the center of attraction. It supports the CardLayout and shows the cards.

public class CardLayoutDemo extends Applet implements CardConstants

This class drives the system.

Details

interface CardConstants

The sole purpose of this interface is to provide what amount to global constants. There are no method "prototypes." As long as pertinent classes play to this sheet of music, errors are minimized.

The constant NUMBER_OF_CARDS must be initialized to the number of cards for a particular implementation.

Array crdName is the common denominator for inter-class access to the card contents.

class CardLogicError extends Exception

The constructor's String argument msg is passed to class Exception, which has the required methods.

class CardContents implements CardConstants

The various text paragraphs for this demo are created here. The formatting anticipates using class MultiLineLabel (described below). It turned out that "...\n\n" doesn't advance the line twice. Consequently, " \n" is the paragraph separator.

The constructor initializes the elements of array cardText with the String text objects. As the comment states, the implementer must synchronize the number of elements with cardCount, which in turn gets its value from the CardConstants interface.

Method elements() provides for enumeration.

final class CardContentsEnumerator implements Enumeration

The methods of this class (and method elements() of class CardContents) are modelled directly on java.util.Vector.

This is how we'll "load" the text for the cards later on.

public class MultiLineLabel extends Canvas

This class (in its own source file) was written by David Flanagan and is presented in his book "Java in a Nutshell" (O'Reilly & Associates, Inc., pages 120-23). It is a tour de force.

It you need to display multiple lines of text, then this is the way to go. (The Java TextArea class supplies scroll bars, which you may not want, and class Label takes only one line of text.)

Objects of this class (actually, its subclass--see below) contain the text which appears in the cards of this demo.

class MultiLineLabelX extends MultiLineLabel

Unless I've missed something, class MultiLineLabel does not have a setBackground() method. This class provides that method.

class CardPanel extends Panel implements CardConstants

This is the "card" itself. It contains a MultiLineLabelX (object mlLabel), which in turn will contain the text passed by way of the constructor.

The only reason this class implements CardConstants is to have the constant CARD_TEXT_FONT available. Otherwise, an object of this class is only passively manipulated and has no knowledge of the outside world.

I wanted a "mild" form of yellow for the text background and discerned the "proper" RGB color mix using Paintbrush. Unfortunately, the AWT appears not to separate custom colors from the default background gray, and the preferred color came out a bilious gray/green (or something). The fudged, final color is still a bit gaudy, and maybe you can do better.

In the constructor:

The layout manager is FlowLayout, because this adjusts to maximizing the applet screen. The card should be centered at all times, and the gap values are an estimate. The text for a card finds its way into a MultiLineLabel object (mlLabel).

The background color and font are set.

The label is added to the Panel, which is to say, the Container.

class Cards extends Panel implements CardConstants

This class is the heart of the implementation.

Object crdLayout of class CardLayout is declared, in order to have an easy way to invoke the show() method of class CardLayout.

Constant NUMBER_OF_CARDS_INDEX is defined to be the index limit of the number of cards. (An aside: Note that NUMBER_OF_CARDS - 1 had to be cast to type byte. Even though NUMBER_OF_CARDS was defined as byte in interface CardConstants, recall that the Java compiler promotes byte values to int in an expression, and it will not "demote" the result back to byte on its own.)

Array crdPanel will hold the CardPanel cards, and variable currCardIndex will subscript the cards in the array.

In the constructor:

Object crdContents of class CardContents is initialized to hold the cards (recall the assignment of text taking place in the constructor of class CardContents).

Object e of class Enumeration will be used to enumerate ("iterate" in C++ terms) the cards.

The layout manager of this panel is CardLayout, because this is the class that shows the cards.

Object crdLayout is now initilized, so that we can easily invoke the show() method of class CardLayout.

Most illustrations of enumerating use a for(...) loop. I'd thought we'd be a little different by using a while(...) loop. Either way the add() method gets the card containers, viz., components, into the current container and into the layout manager.

It was a design decision for this class not to have wraparound showing of the cards, i.e., it is an error to exceed either way the range of available cards. An alternate design could use the first(), next(), previous(), and last() methods of class CardLayout, which is certainly preferable, if you want wraparound.

A large-scale real world design might provide for selecting a particular card, which would be easy to do either by revising this class or subclassing it (note that variable currCardIndex is protected.)

The remaining methods should be self-explanatory. Note that they all have:

			crdLayout.show(this, crdName[currCardIndex]);

in order to "flip" to a card. Note that neither the client class nor this class knows the names, per se, of the cards.

public class CardLayoutDemo extends Applet implements CardConstants

This demo uses buttons to drive the selection of a card, and there is a Label object for the title of the demo. These are established prior to the init() method.

In method init():

The layout for this class is BorderLayout, in order to place objects "geographically."

The Panel containing the Buttons gets FlowLayout.

The showFirstCard() method of class Cards is invoked, but this is not strictly necessary. However, it is done to give an obvious rationale for disabling the buttons for FIRST and PREV (see below).

The action() method traps clicking on a button, the names of which are in interface CardConstants. By design of this class, the strategy is to disable/enable buttons according to which card is currently displayed. The compiler, as you know, insists on catching an exception explicitly announced (throws) by a method.

The remaining methods enable or disable buttons as indicated.

Caveat

When using the Appletviewer and particularly when rapidly clicking, resizing, and cloning, one or more of the cards occasionally goes blank. That is, the background color is maintained, but the text disappears. Doing a reload clears things up, but doing a restart can make things even worse.

I've tried several things to correct this, including a rather nefarious "chaining" up into the multi-line label itself, in order to effect a repaint(), update(), paint() each time a card is changed, but to no avail.

If this happens on your system, and you have some ideas on how to treat the problem, please let me know.

References

Flanagan, David, Java in a Nutshell, O'Reilly & Associates, Inc., 1966.

Class MultiLineLabel is on pages 120-23.

Lemay, Laura and Charles L. Perkins, Teach Yourself Java in 21 Days,

The CD-ROM accompanying this book has CardEx1.java. (I "discovered" this program later on. You have to dig well into the subdirectories under the HTML subdirectory to find it, or "take the course" via your browser.)

Tyma, Paul M, Gabriel Torok, Troy Downing, JAVA PRIMER PLUS, The Waite Group, Inc., 1996.

The CD-ROM accompanying this book has CardTest.java by Arthur van Hoff and was the learning basis for CardLayoutDemo.

Your comments, corrections, or suggestions for enhancements are welcome.

Jack Guyant

70372,3176

